Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

2024

Neural networks (Computer science)

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Energy-Efficient Neuromorphic Architectures For Nuclear Radiation Detection Applications, Jorge I. Canales-Verdial, Jamison R. Wagner, Landon A. Schmucker, Mark Wetzel, Nathan J. Withers, Philippe Erol Proctor, Christof Teuscher, Multiple Additional Authors Mar 2024

Energy-Efficient Neuromorphic Architectures For Nuclear Radiation Detection Applications, Jorge I. Canales-Verdial, Jamison R. Wagner, Landon A. Schmucker, Mark Wetzel, Nathan J. Withers, Philippe Erol Proctor, Christof Teuscher, Multiple Additional Authors

Electrical and Computer Engineering Faculty Publications and Presentations

A comprehensive analysis and simulation of two memristor-based neuromorphic architectures for nuclear radiation detection is presented. Both scalable architectures retrofit a locally competitive algorithm to solve overcomplete sparse approximation problems by harnessing memristor crossbar execution of vector–matrix multiplications. The proposed systems demonstrate excellent accuracy and throughput while consuming minimal energy for radionuclide detection. To ensure that the simulation results of our proposed hardware are realistic, the memristor parameters are chosen from our own fabricated memristor devices. Based on these results, we conclude that memristor-based computing is the preeminent technology for a radiation detection platform.