Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Development Of A Configurable Real-Time Event Detection Framework For Power Systems Using Swarm Intelligence Optimization, Umar Farooq Jul 2022

Development Of A Configurable Real-Time Event Detection Framework For Power Systems Using Swarm Intelligence Optimization, Umar Farooq

Dissertations and Theses

Modern power systems characterized by complex topologies require accurate situational awareness to maintain an adequate level of reliability. Since they are large and spread over wide geographical areas, occurrence of failures is inevitable in power systems. Various generation and transmission disturbances give rise to a mismatch between generation and demand, which manifest as frequency events. These events can take the form of negligible frequency deviations or more severe emergencies that can precipitate cascading outages, depending on the severity of the disturbance and efficacy of remedial action schema. The impacts of such events have become more critical with recent decline in …


Quantum Grover's Oracles With Symmetry Boolean Functions, Peng Gao Aug 2021

Quantum Grover's Oracles With Symmetry Boolean Functions, Peng Gao

Dissertations and Theses

Quantum computing has become an important research field of computer science and engineering. Among many quantum algorithms, Grover's algorithm is one of the most famous ones. Designing an effective quantum oracle poses a challenging conundrum in circuit and system-level design for practical application realization of Grover's algorithm.

In this dissertation, we present a new method to build quantum oracles for Grover's algorithm to solve graph theory problems. We explore generalized Boolean symmetric functions with lattice diagrams to develop a low quantum cost and area efficient quantum oracle. We study two graph theory problems: cycle detection of undirected graphs and generalized …


Aggregated Water Heater System (Awhs) Optimization For Ancillary Services, Manasseh Obi Apr 2020

Aggregated Water Heater System (Awhs) Optimization For Ancillary Services, Manasseh Obi

Dissertations and Theses

In this dissertation, I present a two-stage optimization routine that schedules an Aggregated Water Heater System (AWHS) to concurrently provide three utility ancillary services, namely, frequency regulation, frequency response, and peak demand mitigation.

Water heaters can be controlled to manage their energy take, the amount of energy a water heater can absorb upon command. The AWHS is a model aggregation of thousands of water heaters, the energy take and power characteristics of which are based on U.S Census household data and usage behavior patterns. The aggregate energy take available in the AWHS may be dispatched en masse for participation in …


The Optimization Of Machining Parameters For Milling Operations By Using The Nelder Mead Simplex Method, Yubin Lee Jan 2020

The Optimization Of Machining Parameters For Milling Operations By Using The Nelder Mead Simplex Method, Yubin Lee

Dissertations and Theses

Machining operations need to be optimized to maximize profit for computer numerical control (CNC) machines. Although minimum production time could mean high productivity, it can not guarantee maximum profit rate in CNC milling operations. The possible range of machining parameters is limited by several constraints, such as maximum machine power, surface finish requirements, and maximum cutting force for the stability of milling operations. Among CNC machining parameters, cutting speed and feed have the greatest effect on machining operations. Therefore, cutting speed and feed are considered as main process variables to maximize the profit rate of CNC milling operations.

A variety …


Efficient Methods For Robust Circuit Design And Performance Optimization For Carbon Nanotube Field Effect Transistors, Muhammad Ali Mar 2019

Efficient Methods For Robust Circuit Design And Performance Optimization For Carbon Nanotube Field Effect Transistors, Muhammad Ali

Dissertations and Theses

Carbon nanotube field-effect transistors (CNFETs) are considered to be promising candidate beyond the conventional CMOSFET due to their higher current drive capability, ballistic transport, lesser power delay product and higher thermal stability. CNFETs show great potential to build digital systems on advanced technology nodes with big benefits in terms of power, performance and area (PPA). Hence, there is a great need to develop proven models and CAD tools for performance evaluation of CNFET-based circuits. CNFETs specific parameters, such as number of tubes, pitch (spacing between the tubes) and diameter of CNTs determine current driving capability, speed, power consumption and area …


Design Optimization For A Cnc Machine, Alin Resiga Apr 2018

Design Optimization For A Cnc Machine, Alin Resiga

Dissertations and Theses

Minimizing cost and optimization of nonlinear problems are important for industries in order to be competitive. The need of optimization strategies provides significant benefits for companies when providing quotes for products. Accurate and easily attained estimates allow for less waste, tighter tolerances, and better productivity. The Nelder-Mead Simplex method with exterior penalty functions was employed to solve optimum machining parameters. Two case studies were presented for optimizing cost and time for a multiple tools scenario. In this study, the optimum machining parameters for milling operations were investigated. Cutting speed and feed rate are considered as the most impactful design variables …


Generalized Differential Calculus And Applications To Optimization, R. Blake Rector Jun 2017

Generalized Differential Calculus And Applications To Optimization, R. Blake Rector

Dissertations and Theses

This thesis contains contributions in three areas: the theory of generalized calculus, numerical algorithms for operations research, and applications of optimization to problems in modern electric power systems. A geometric approach is used to advance the theory and tools used for studying generalized notions of derivatives for nonsmooth functions. These advances specifically pertain to methods for calculating subdifferentials and to expanding our understanding of a certain notion of derivative of set-valued maps, called the coderivative, in infinite dimensions. A strong understanding of the subdifferential is essential for numerical optimization algorithms, which are developed and applied to nonsmooth problems in operations …


Hypoid Gear Optimization, Selvaraj Ramachandran Jan 1992

Hypoid Gear Optimization, Selvaraj Ramachandran

Dissertations and Theses

A hypoid gear optimization procedure using the method of feasible directions has been developed. The objective is to reduce the gear set weight with bending strength, contact strength and facewidth-diametral pitch ratio as constraints. The objective function weight, is calculated from the geometric approximation of the volume of the gear and pinion. The design variables selected are number of gear teeth, diametral pitch, and facewidth. The input parameters for starting the initial design phase are power to be transmitted, speed, gear ratio, type of application, mounting condition, type of loading, and the material to be used. In the initial design …


Complex Systems And The Price-Resource Directive Coordination Procedure, Chamberlain Lambros Foes Jun 1972

Complex Systems And The Price-Resource Directive Coordination Procedure, Chamberlain Lambros Foes

Dissertations and Theses

In this thesis, the problem considered is that of linear static optimization of a large system which is composed of a finite number of subsystems, each characterized by its own constraint matrix and objective function.

The total system is itself constrained by resource availabilities and other factors, and its objective function is the mathematical linear sum of the objective function of the subsystems. The total system constraints couple together all the subsystems. The total system is first reformulated as a two-level problem by decoupling the total system constraints utilizing an arbitrary partition of the total system resources and other factors …