Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten Aug 2023

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten

Dissertations and Theses

For the safety of both equipment and human life, it is important to identify the location of orphaned radioactive material as quickly and accurately as possible. There are many factors that make radiation localization a challenging task, such as low gamma radiation signal strength and the need to search in unknown environments without prior information. The inverse-square relationship between the intensity of radiation and the source location, the probabilistic nature of nuclear decay and gamma ray detection, and the pervasive presence of naturally occurring environmental radiation complicates localization tasks. The presence of obstructions in complex environments can further attenuate the …


Synthesizing Expressive Behaviors For Humanoid Robots, Mathias Irwan Sunardi Jul 2020

Synthesizing Expressive Behaviors For Humanoid Robots, Mathias Irwan Sunardi

Dissertations and Theses

Humanoid robots are expected to be able to communicate with expressive gestures at the same level of proficiency as humans. However, creating expressive gestures for humanoid robots is difficult and time consuming due to the high number of degrees of freedom (DOF) and the iterations needed to get the desired expressiveness.

Current robot motion editing software has varying levels of sophistication of motion editing tools ranging from basic ones that are text-only, to ones that provide graphical user interfaces (GUIs) which incorporate advanced features, such as curve editors and inverse kinematics. These tools enable users to create simple motions; but …


Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom Oct 2019

Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom

Dissertations and Theses

This Drumming Robot thesis demonstrates the design of a robot which can play drums in rhythm to an external audio source. The audio source can be either a pre-recorded .wav file or a live sample .wav file from a microphone. The dominant beats-per-minute (BPM) of the audio would be extracted and the robot would drum in time to the BPM. A Fourier Analysis-based BPM detection algorithm, developed by Eric Scheirer (Tempo and beat analysis of acoustical musical signals)i was adopted and implemented. In contrast to other popular algorithms, the main advantage of Scheirer's algorithm is it has …


Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger Jul 2019

Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger

Dissertations and Theses

Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs). Compared to the previous version …


Biomimetic Design And Construction Of A Bipedal Walking Robot, Alexander Gabriel Steele Jun 2018

Biomimetic Design And Construction Of A Bipedal Walking Robot, Alexander Gabriel Steele

Dissertations and Theses

Human balance and locomotion control is highly complex and not well understood. To understand how the nervous system controls balance and locomotion works, we test how the body responds to controlled perturbations, the results are analyzed, and control models are developed. However, to recreate this system of control there is a need for a robot with human-like kinematics. Unfortunately, such a robotic testbed does not exist despite the numerous applications such a design would have in mobile robotics, healthcare, and prosthetics.

This thesis presents a robotic testbed model of human lower legs. By using MRI and CT scans, I designed …


Vision-Based Motion For A Humanoid Robot, Khalid Abdullah Alkhulayfi Jul 2016

Vision-Based Motion For A Humanoid Robot, Khalid Abdullah Alkhulayfi

Dissertations and Theses

The overall objective of this thesis is to build an integrated, inexpensive, human-sized humanoid robot from scratch that looks and behaves like a human. More specifically, my goal is to build an android robot called Marie Curie robot that can act like a human actor in the Portland Cyber Theater in the play Quantum Debate with a known script of every robot behavior. In order to achieve this goal, the humanoid robot need to has degrees of freedom (DOF) similar to human DOFs. Each part of the Curie robot was built to achieve the goal of building a complete humanoid …


Mobile Robot Localization Based On Kalman Filter, Omar Q. Mohsin Jan 2014

Mobile Robot Localization Based On Kalman Filter, Omar Q. Mohsin

Dissertations and Theses

Robot localization is one of the most important subjects in the Robotics science. It is an interesting and complicated topic. There are many algorithms to solve the problem of localization. Each localization system has its own set of features, and based on them, a solution will be chosen. In my thesis, I want to present a solution to find the best estimate for a robot position in certain space for which a map is available. The thesis started with an elementary introduction to the probability and the Gaussian theories. Simple and advanced practical examples are presented to illustrate each concept …


Two Dimensional And Three Dimensional Path Planning In Robotics, Hyun Suk Kim Jan 1988

Two Dimensional And Three Dimensional Path Planning In Robotics, Hyun Suk Kim

Dissertations and Theses

A methodology for 2D and 3D collision free path planning algorithm in a structured environment is presented. The isolated free convex areas are represented as a nodes in a graph, and a graph traversal strategy that dynamically allocates costs to graph path is used. Modification of the algorithm for small computational time and optimality is discussed. The 3D path planning is done in the three orthogonal two-dimensional projections of a 3D environment. Collision checking to increase the optimality for 3D paths is done in each of the three orthogonal two-dimensional subspaces.