Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Theses/Dissertations

Nanoscience and Nanotechnology

Dissertations and Theses

Nanostructured materials -- Optical properties

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Investigations Into Size And Surface Control Of Silicon Nanocrystals For Improved Optical Properties, James Donald Barnes Jun 2021

Investigations Into Size And Surface Control Of Silicon Nanocrystals For Improved Optical Properties, James Donald Barnes

Dissertations and Theses

The discovery of visible photoluminescence (PL) from nanocrystalline porous silicon in 1990 led to extensive research into the mechanisms of the emergent properties, and optimization of these properties, for use in applications. The widespread use of silicon nanoparticles (Si NPs) in commercial applications is currently limited by three main factors: 1) poor radiative recombination efficiency of the interband transition, 2) instability of the interband photoluminescence, and 3) a lack of scalable methods for producing Si NPs that are both highly crystalline and size monodisperse.

To address these limitations, this dissertation correlates changes in the photoluminescence properties of hydrogen passivated silicon …


Investigation Into Effects Of Instability And Reactivity Of Hydride-Passivated Silicon Nanoparticles On Interband Photoluminescence, Christine Marie Radlinger May 2017

Investigation Into Effects Of Instability And Reactivity Of Hydride-Passivated Silicon Nanoparticles On Interband Photoluminescence, Christine Marie Radlinger

Dissertations and Theses

While silicon has long been utilized for its electronic properties, its use as an optical material has largely been limited due to the poor efficiency of interband transitions. However, discovery of visible photoluminescence (PL) from nanocrystalline silicon in 1990 triggered many ensuing research efforts to optimize PL from nanocrystalline silicon for optical applications. Currently, use of photoluminescent silicon nanoparticles (Si NPs) is commercially limited by: 1) the instability of the energy and intensity of the PL, and 2) the low quantum yield of interband PL from Si NPs.

Herein, red-emitting, hydrogen-passivated silicon nanoparticles (H-Si NPs) were synthesized by thermally-induced disproportionation …