Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Layered Naba2m3q3(Q2) (M = Cu Or Ag; Q = S Or Se) Chalcogenides And Local Ordering In Their Mixed-Anion Compositions, Ayat Tassanov, Huiju Lee, Yi Xia, James M. Hodges Aug 2024

Layered Naba2m3q3(Q2) (M = Cu Or Ag; Q = S Or Se) Chalcogenides And Local Ordering In Their Mixed-Anion Compositions, Ayat Tassanov, Huiju Lee, Yi Xia, James M. Hodges

Mechanical and Materials Engineering Faculty Publications and Presentations

Three new NaBa2M3Q3(Q2) (M = Ag or Cu; Q = S or Se) chalcogenides were prepared by using solid-state methods and structurally characterized by using single-crystal X-ray diffraction. NaBa2Ag3Se3(Se2) and NaBa2Cu3Se3(Se2) crystallize in monoclinic space group C2/m and have a two-dimensional structure composed of edge-sharing MSe4/4 tetrahedra separated by Na+ and Ba2+ cations, along with (Se2)2– dimers at the center of the spacings between [M3Se3]3– slabs. NaBa2Ag3S3(S2) adopts a related structure with space group C2/m but has additional, crystallographically distinct Ag atoms in the [Ag3S3]3– layer that are linearly coordinated. NaBa2Ag3Se3(Se2) and NaBa2Ag3S3(S2) have indirect band gaps measured to be …


Hierarchy Of Exchange-Correlation Functionals In Computing Lattice Thermal Conductivities Of Rocksalt And Zinc-Blende Semiconductors, Jiacheng Wei, Zhonghao Xia, Yi Xia, Jiangang He Aug 2024

Hierarchy Of Exchange-Correlation Functionals In Computing Lattice Thermal Conductivities Of Rocksalt And Zinc-Blende Semiconductors, Jiacheng Wei, Zhonghao Xia, Yi Xia, Jiangang He

Mechanical and Materials Engineering Faculty Publications and Presentations

Lattice thermal conductivity (𝜅L) is a crucial characteristic of crystalline solids with significant implications for thermal management, energy conversion, and thermal barrier coating. The advancement of computational tools based on density functional theory (DFT) has enabled the effective utilization of phonon quasiparticle-based approaches to unravel the underlying physics of various crystalline systems. While the higher order of anharmonicity is commonly used for explaining extraordinary heat transfer behaviors in crystals, the impact of exchange-correlation (XC) functionals in DFT on describing anharmonicity has been largely overlooked. The XC functional is essential for determining the accuracy of DFT in describing interactions among electrons/ions …


Enhancement Of Mechanical Properties Of Pcl/Pla/Dmso2 Composites For Bone Tissue Engineering, Kyung-Eun Min, Jae-Won Jang, Cheolhee Kim, Sung Yi Jul 2024

Enhancement Of Mechanical Properties Of Pcl/Pla/Dmso2 Composites For Bone Tissue Engineering, Kyung-Eun Min, Jae-Won Jang, Cheolhee Kim, Sung Yi

Mechanical and Materials Engineering Faculty Publications and Presentations

Bone tissue engineering shows potential for regenerating or replacing damaged bone tissues by utilizing biomaterials renowned for their biocompatibility and structural support capabilities. Among these biomaterials, polycaprolactone (PCL) and polylactic acid (PLA) have gained attention due to their biodegradability and versatile applications. However, challenges such as low degradation rates and poor mechanical properties limit their effectiveness. Dimethyl sulfone (DMSO2) has emerged as a potential additive to address these limitations, offering benefits such as reduced viscosity, increased degradation time, and enhanced surface tension. In this study, we investigate tailored composites comprising PLA, PCL, and DMSO2 to enhance mechanical …


Developing And Testing Low-Cost Air Cleaners For Safer Spaces During Wildfires, Brett W. Stinson, Elliott T. Gall Jul 2024

Developing And Testing Low-Cost Air Cleaners For Safer Spaces During Wildfires, Brett W. Stinson, Elliott T. Gall

Mechanical and Materials Engineering Faculty Publications and Presentations

Air cleaning reduces indoor exposure to fine particulate matter (PM2.5) during wildfire smoke events. However, resource and cost constraints may limit access to air cleaning during such an event, as both commercial devices and the higher-rated MERV filters that do-it-yourself (DIY) assemblies typically rely upon tend to be expensive and in short supply. With these constraints in mind, we developed and evaluated several configurations of a novel, DIY air cleaner that uses common household fabrics as filtration media. Clean air delivery rates (CADRs) of the devices were experimentally evaluated in two ways: first, with independent measurements of flowrates and single …


Fem-Based Conductive Heat Transfer Analytical Description Of Solidification Rate And Temperature Gradient During Lateral Laser Beam Oscillation Welding Of Aluminum Alloy, Jason Cheon, Cheolhee Kim, Sanghoon Kang, Minjung Kang Jul 2024

Fem-Based Conductive Heat Transfer Analytical Description Of Solidification Rate And Temperature Gradient During Lateral Laser Beam Oscillation Welding Of Aluminum Alloy, Jason Cheon, Cheolhee Kim, Sanghoon Kang, Minjung Kang

Mechanical and Materials Engineering Faculty Publications and Presentations

This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid–liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the underlying microstructural evolution and grain formation during welding were examined. FEM-based CHT enables the calculation of temperature gradients (G) and solidification rates (R), offering insights into the formation of equiaxed structures, which are crucial for suppressing hot cracking. Columnar-to-equiaxed structure transition thresholds, such as G/R and G3/R, accurately predict …


Wind Plant Wake Losses: Disconnect Between Turbine Actuation And Control Of Plant Wakes With Engineering Wake Models, Ryan Scott, Nicholas Hamilton, Raul Bayoan Cal, Patrick Moriarty Jul 2024

Wind Plant Wake Losses: Disconnect Between Turbine Actuation And Control Of Plant Wakes With Engineering Wake Models, Ryan Scott, Nicholas Hamilton, Raul Bayoan Cal, Patrick Moriarty

Mechanical and Materials Engineering Faculty Publications and Presentations

Wake losses from neighboring plants may become a major factor in wind plant design and control as additional plants are constructed in areas with high wind resource availability. Because plant wakes span a large range of physical scales, from turbine rotor diameter to tens of kilometers, it is unclear whether conventional wake models or turbine control strategies are effective at the plant scale. Wake steering and axial induction control are evaluated in the current work as means of reducing the impact of neighboring wind plants on power and levelized cost of electricity. FLOw Redirection and Induction in Steady State (FLORIS) …


Artificial Neural Network-Based Modelling For Yield Strength Prediction Of Austenitic Stainless-Steel Welds, Sukil Park, Cheolhee Kim, Namhyun Kang May 2024

Artificial Neural Network-Based Modelling For Yield Strength Prediction Of Austenitic Stainless-Steel Welds, Sukil Park, Cheolhee Kim, Namhyun Kang

Mechanical and Materials Engineering Faculty Publications and Presentations

This study aimed to develop an artificial neural network (ANN) model for predicting the yield strength of a weld metal composed of austenitic stainless steel and compare its performance with that of conventional multiple regression and machine learning models. The input parameters included the chemical composition of the nine effective elements (C, Si, Mn, P, S, Ni, Cr, Mo, and Cu) and the heat input per unit length. The ANN model (comprising five nodes in one hidden layer), which was constructed and trained using 60 data points, yielded an R2 value of 0.94 and a mean average percent error …


Rheological Properties And 3d Printing Behavior Of Pcl And Dmso2 Composites For Bio-Scaffold, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi May 2024

Rheological Properties And 3d Printing Behavior Of Pcl And Dmso2 Composites For Bio-Scaffold, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi

Mechanical and Materials Engineering Faculty Publications and Presentations

The significance of rheology in the context of bio three-dimensional (3D) printing lies in its impact on the printing behavior, which shapes material flow and the layer-by-layer stacking process. The objective of this study is to evaluate the rheological and printing behaviors of polycaprolactone (PCL) and dimethyl sulfone (DMSO2) composites. The rheological properties were examined using a rotational rheometer, employing a frequency sweep test. Simultaneously, the printing behavior was investigated using a material extrusion 3D printer, encompassing varying printing temperatures and pressures. Across the temperature range of 120–140 °C, both PCL and PCL/DMSO2 composites demonstrated liquid-like behavior, …


Electron-Phonon Interaction Mediated Gigantic Enhancement Of Thermoelectric Power Factor Induced By Topological Phase Transition., Zhi Li, Koushik Pal, Huiju Lee, Chris Wolverton, Yi Xia Apr 2024

Electron-Phonon Interaction Mediated Gigantic Enhancement Of Thermoelectric Power Factor Induced By Topological Phase Transition., Zhi Li, Koushik Pal, Huiju Lee, Chris Wolverton, Yi Xia

Mechanical and Materials Engineering Faculty Publications and Presentations

We propose an effective strategy to significantly enhance the thermoelectric power factor (PF) of a series of 2D semimetals and semiconductors by driving them toward a topological phase transition (TPT). Employing first-principles calculations with an explicit consideration of electron-phonon interactions, we analyze the electronic transport properties of germanene across the TPT by applying hydrogenation and biaxial strain. We reveal that the nontrivial semimetal phase, hydrogenated germanene with 8% biaxial strain, achieves a considerable 4-fold PF enhancement, attributed to the highly asymmetric electronic structure and semimetallic nature of the nontrivial phase. We extend the strategy to another two representative 2D materials …


Eco-Efficient Coatings For Healthy Indoors: Ozone Deposition Velocities, Primary And Secondary Emissions, Alessandra Ranesi, Paulina Faria, M. Rosario Veiga, Elliott T. Gall Apr 2024

Eco-Efficient Coatings For Healthy Indoors: Ozone Deposition Velocities, Primary And Secondary Emissions, Alessandra Ranesi, Paulina Faria, M. Rosario Veiga, Elliott T. Gall

Mechanical and Materials Engineering Faculty Publications and Presentations

Volatile organic compounds (VOCs) and ozone (O3) are harmful pollutants present in indoor air. Indoor concentrations of VOCs are typically higher than outdoors, due to the presence of indoor sources like building materials and ozone-surface reactions. The study aims to identify and quantify the ozone reactivity and primary and secondary emissions of different indoor coatings. The coatings selected for the study were three gypsum-based plastering mortar, with and without the addition of a bio-waste from Acacia dealbata (raw bark, BA, and bark heated at 250°C, BA250), two clay plasters (one with sand and the other with seashells as additional aggregate), …


Inertial Particle Clustering Due To Turbulence In An Air Jet, Bianca Viggiano, Kris Gish, Stephen Solovitz, Raul Bayoan Cal Apr 2024

Inertial Particle Clustering Due To Turbulence In An Air Jet, Bianca Viggiano, Kris Gish, Stephen Solovitz, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Explosive volcanic eruptions create turbulent plumes of fine ash particles. When these particles collide in the presence of moisture and electrostatic fields they combine into larger aggregates, which can significantly change the atmospheric residence time of the airborne cloud. Previous studies have suggested that turbulence may lead to preferential concentration—also known as clustering—of particles within the flow, increasing the likelihood of collisions and aggregation. Few experimental studies have quantified these processes for volcanic plumes. This behavior was investigated using a particle-laden air jet. By systematically varying the exit speed and the size, density, and concentration of particles, flows were produced …


First-Principles Calculations Of Lattice Thermal Conductivity In Tl,3Vse4: Uncertainties From Different Approaches Of Force Constants, Zhi Li, Yi Xia, Chris Wolverton Apr 2024

First-Principles Calculations Of Lattice Thermal Conductivity In Tl,3Vse4: Uncertainties From Different Approaches Of Force Constants, Zhi Li, Yi Xia, Chris Wolverton

Mechanical and Materials Engineering Faculty Publications and Presentations

Accurate and reliable first-principles simulations of lattice thermal conductivity (κL) of highly anharmonic crystals have long been challenging in condensed matter and materials physics. With recent theoretical advances, the calculation of κL has evolved into a sophisticated process requiring the consideration of higher levels of refinements, such as high-order phonon-phonon scattering, anharmonic phonon renormalization, and heat transport beyond the phonon gas picture. Interatomic force constants (IFCs), however, as a shared pillar of the above concepts, are sometimes ambiguously implemented in this process, resulting in non-negligible uncertainties among different studies. Here, we revisit the ultralow κL of Tl3VSe4 and make a …


Machine Learning A Universal Harmonic Interatomic Potential For Predicting Phonons In Crystalline Solids, Huiju Lee, Yi Xia Mar 2024

Machine Learning A Universal Harmonic Interatomic Potential For Predicting Phonons In Crystalline Solids, Huiju Lee, Yi Xia

Mechanical and Materials Engineering Faculty Publications and Presentations

Phonons, as quantized vibrational modes in crystalline materials, play a crucial role in determining a wide range of physical properties, such as thermal and electrical conductivity, making their study a cornerstone in materials science. In this study, we present a simple yet effective strategy for deep learning harmonic phonons in crystalline solids by leveraging existing phonon databases and state-of-the-art machine learning techniques. The key of our method lies in transforming existing phonon datasets, primarily represented in interatomic force constants, into a force-displacement representation suitable for training machine learning universal interatomic potentials. By applying our approach to one of the largest …


Wavelength-Induced Shedding Frequency Modulation Of Seal Whisker Inspired Cylinders, Trevor Dunt, Kirby S. Heck, Kathleen Lyons, Christin Murphy, Raul Bayoan Cal, Jennifer A. Franck Mar 2024

Wavelength-Induced Shedding Frequency Modulation Of Seal Whisker Inspired Cylinders, Trevor Dunt, Kirby S. Heck, Kathleen Lyons, Christin Murphy, Raul Bayoan Cal, Jennifer A. Franck

Mechanical and Materials Engineering Faculty Publications and Presentations

The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Undulation wavelength is systematically investigated in order to explore its effect on unsteady lift force and shedding frequency. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized …


Droplet Jump From A Particle Bed, Karl Cardin, Facundo Cabrera-Booman, Raúl Bayoán Cal Feb 2024

Droplet Jump From A Particle Bed, Karl Cardin, Facundo Cabrera-Booman, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Drop tower experiments have been performed to study droplet jump from a particle bed across a wide range of fluid viscosities. Here the droplet jumps from the particle bed in response to the apparent step reduction from terrestrial gravity to microgravity when the experiment is dropped and enters free fall. The presence of a particle layer has been found to affect contact line dissipation and the overall jumping behavior of droplets. Additionally, the study has identified the impact of the Ohnesorge number (Oh) on droplet morphology. The investigation has yielded results that not only validate a modified version of the …


Path Instabilities And Drag In The Settling Of Single Spheres, Facundo Cabrera-Booman, Nicolas Plihon, Mickael Bourgoin Jan 2024

Path Instabilities And Drag In The Settling Of Single Spheres, Facundo Cabrera-Booman, Nicolas Plihon, Mickael Bourgoin

Mechanical and Materials Engineering Faculty Publications and Presentations

The settling behavior of individual spheres in a quiescent fluid was studied experimentally. The dynamics of the spheres was analyzed in the parameter space of particle-to-fluid density ratio (Γ) and Galileo number (Ga), with Γ ∈ (1.1,7.9) and Ga ∈ (100,340). The experimental results showed for the first time that the mean trajectory angle with the vertical exhibits a complex behavior as Ga and Γ are varied. Numerically predicted regimes such as Vertical Periodic for low Γ values, and Planar Rotating for high Γ values were validated. In particular, for the denser spheres, a clear transition from planar to non-planar …


Experimental And Modeled Assessment Of Interventions To Reduce Pm2.5 In A Residence During Awildfire Event, Chrissi Argyro Antonopoulos, H. E. Dillon, Elliott T. Gall Jan 2024

Experimental And Modeled Assessment Of Interventions To Reduce Pm2.5 In A Residence During Awildfire Event, Chrissi Argyro Antonopoulos, H. E. Dillon, Elliott T. Gall

Mechanical and Materials Engineering Faculty Publications and Presentations

Increasingly large and frequent wildfires affect air quality even indoors by emitting and dispersing fine/ultrafine particulate matter known to pose health risks to residents. With this health threat, we are working to help the building science community develop simplified tools that may be used to estimate impacts to large numbers of homes based on high-level housing characteristics. In addition to reviewing literature sources, we performed an experiment to evaluate interventions to mitigate degraded indoor air quality. We instrumented one residence for one week during an extreme wildfire event in the Pacific Northwest. Outdoor ambient concentrations of PM2.5 reached historic …