Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Mechanical Engineering

Bubbles -- Effect of reduced gravity on

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Large Length Scale Capillary Fluidics: From Jumping Bubbles To Drinking In Space, Andrew Paul Wollman Jun 2016

Large Length Scale Capillary Fluidics: From Jumping Bubbles To Drinking In Space, Andrew Paul Wollman

Dissertations and Theses

In orbit, finding the "bottom" of your coffee cup is a non-trivial task. Subtle forces often masked by gravity influence the containment and transport of fluids aboard spacecraft, often in surprising non-intuitive ways. Terrestrial experience with capillary forces is typically relegated to the micro-scale, but engineering community exposure to large length scale capillary fluidics critical to spacecraft fluid management design is low indeed. Low-cost drop towers and fast-to-flight International Space Station (ISS) experiments are increasing designer exposure to this fresh field of study. This work first provides a wide variety of drop tower tests that demonstrate fundamental and applied capillary …


Passive Phase Separation Of Microgravity Bubbly Flows Using Conduit Geometry, Ryan M. Jenson, Andrew Paul Wollman, Mark M. Weislogel, Lauren Sharp, Robert Green, Peter J. Canfield, Jörg Klatte, Michael E. Dreyer Oct 2014

Passive Phase Separation Of Microgravity Bubbly Flows Using Conduit Geometry, Ryan M. Jenson, Andrew Paul Wollman, Mark M. Weislogel, Lauren Sharp, Robert Green, Peter J. Canfield, Jörg Klatte, Michael E. Dreyer

Mechanical and Materials Engineering Faculty Publications and Presentations

The ability to separate liquid and gas phases in the absence of a gravitational acceleration has proven a challenge to engineers since the inception of space exploration. Due to our singular experience with terrestrial systems, artificial body forces are often imparted in multiphase fluid systems aboard spacecraft to reproduce the buoyancy effect. This approach tends to be inefficient, adding complexity, resources, and failure modes. Ever present in multiphase phenomena, the forces of surface tension can be exploited to aid passive phase separations where performance characteristics are determined solely by geometric design and system wettability. Said systems may be readily designed …


Capillary Phenomena: Investigations In Compressed Bubble Migration, Geometric Wetting, And Blade-Bound Droplet Stability, William Henry Blackmore Jan 2013

Capillary Phenomena: Investigations In Compressed Bubble Migration, Geometric Wetting, And Blade-Bound Droplet Stability, William Henry Blackmore

Dissertations and Theses

Capillary flows continue to be important in numerous spacecraft systems where the effective magnitude of the gravity vector is approximately one millionth that of normal Earth gravity. Due to the free fall state of orbiting spacecraft, the effects of capillarity on the fluid systems onboard can dominate the fluid behavior over large length scales. In this research three investigations are pursued where the unique interplay between surface tension forces, wetting characteristics, and system geometry control the fluid behavior, whether in large systems aboard spacecraft, or micro-scale systems on Earth. First, efforts in support of two International Space Station (ISS) experiments …