Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Computer Sciences

Computational neuroscience

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Using Reservoir Computing To Build A Robust Interface With Dna Circuits In Determining Genetic Similarities Between Pathogens, Christopher Neighbor, Christof Teuscher May 2018

Using Reservoir Computing To Build A Robust Interface With Dna Circuits In Determining Genetic Similarities Between Pathogens, Christopher Neighbor, Christof Teuscher

Student Research Symposium

As computational power increases, the field of neural networks has advanced exponentially. In particular recurrent neural networks (RNNs) are being utilized to simulate dynamic systems and to learn to predict time series data. Reservoir computing is an architecture which has the potential to increase training speed while reducing computational costs. Reservoir computing consists of a RNN with a fixed connections “reservoir” while only the output layer is trained. The purpose of this research is to explore the effective use of reservoir computing networks with the eventual application towards use in a DNA based molecular computing reservoir for use in pathogen …


Scale Invariant Object Recognition Using Cortical Computational Models And A Robotic Platform, Danny Voils Jan 2012

Scale Invariant Object Recognition Using Cortical Computational Models And A Robotic Platform, Danny Voils

Dissertations and Theses

This paper proposes an end-to-end, scale invariant, visual object recognition system, composed of computational components that mimic the cortex in the brain. The system uses a two stage process. The first stage is a filter that extracts scale invariant features from the visual field. The second stage uses inference based spacio-temporal analysis of these features to identify objects in the visual field. The proposed model combines Numenta's Hierarchical Temporal Memory (HTM), with HMAX developed by MIT's Brain and Cognitive Science Department. While these two biologically inspired paradigms are based on what is known about the visual cortex, HTM and HMAX …