Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Application Of Advanced Grid Generation Techniques For Flow Field Computations About Complex Configurations, Monchai Kathong Jul 1988

Application Of Advanced Grid Generation Techniques For Flow Field Computations About Complex Configurations, Monchai Kathong

Mechanical & Aerospace Engineering Theses & Dissertations

In the computation of flow fields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the "multiple grids" or "zonal grids" approach, and its applications are investigated in this study. The method is a conservative approach and provides conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed …


A Finite Element Formulation For The Large Deflection Random Response Of Thermally Buckled Structures, James Eugene Locke Jul 1988

A Finite Element Formulation For The Large Deflection Random Response Of Thermally Buckled Structures, James Eugene Locke

Mechanical & Aerospace Engineering Theses & Dissertations

The effects of temperature and acoustic loading are included in a theoretical finite element large deflection formulation for thin, isotropic plate and beam type structures. Thermal loads are applied as steady-state temperature distributions, and acoustic loads are taken to be stationary and Gaussian with zero mean and uniform magnitude and phase over the surface of the structure. Material properties are considered to be independent of temperature. Also, inplane and rotary inertia terms are assumed to be neglegible, and all inplane edge conditions are taken to be immovable. For the random vibration analysis, cross correlation terms are included.

The nature of …


Viscous Shock Layer Analysis Of Hypersonic Flows Over Long Slender Vehicles, Kam-Pui Lee Jul 1988

Viscous Shock Layer Analysis Of Hypersonic Flows Over Long Slender Vehicles, Kam-Pui Lee

Mechanical & Aerospace Engineering Theses & Dissertations

A method for solving the viscous shock-layer equations for hypersonic flows over long slender bodies is presented. The governing equations are solved by employing a spatial-marching implicit finite-difference technique. The two first-order equations, continuity and normal momentum, are solved simultaneously as a coupled set. This method yields a simple and computationally efficient technique.

Flows past hyperboloids and sphere cones with body half angles of five to 35 degrees are considered. The flow conditions included are from high Reynolds numbers at low altitudes to low Reynolds numbers at high altitudes. Detailed comparisons have been made with other predictions and experimental data …


Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan Jul 1988

Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan

Mechanical & Aerospace Engineering Theses & Dissertations

Computations have been performed to simulate turbulent supersonic, transonic, and subsonic flows past three-dimensional deep, transitional, and shallow cavities. Simulation of these self sustained oscillatory flows has been generated through time accurate solutions of Reynolds averaged full Navier-Stokes equations using the explicit MacCormack scheme. The Reynolds stresses have been modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses have been performed for the instantaneous pressure values on the cavity floor. Comparison with experimental data is made in terms of the mean …


Full-Potential Integral Solutions For Steady And Unsteady Transonic Airfoils With And Without Embedded Euler Domains, Hong Hu Apr 1988

Full-Potential Integral Solutions For Steady And Unsteady Transonic Airfoils With And Without Embedded Euler Domains, Hong Hu

Mechanical & Aerospace Engineering Theses & Dissertations

The integral equation solution of the full-potential equation is presented for steady and unsteady transonic airfoil flow problems. The method is also coupled with an embedded Euler domain solution to treat flows with strong shocks for steady flows.

For steady transonic flows, three integral equation schemes are well developed. The first two schemes are based on the integral equation solution of the full-potential equation in terms of the velocity field. The Integral Equation with Shock-Capturing (IE-SC) and the Integral Equation with Shock-Capturing Shock-Fitting (IE-SCSF) schemes have been developed. The IE-SCSF scheme is an extension of the IE-SC scheme, which consists …


Investigation Of Supersonic Chemically Reacting And Radiating Channel Flow, Mortaza Mani Apr 1988

Investigation Of Supersonic Chemically Reacting And Radiating Channel Flow, Mortaza Mani

Mechanical & Aerospace Engineering Theses & Dissertations

The two-dimensional time dependent Navier-Stokes equations are used to investigate supersonic flows undergoing finite rate chemical reaction and radiation interaction for a hydrogen-air system. The explicit multi-stage finite volume technique of Jameson is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The multi-dimensional radiative transfer equations for a nongray model are provided for a general configuration, and then reduced for a planer geometry. Both pseudo-gray and nongray models are used to represent the absorption-emission characteristics of the …


Integral Equation Solution Of The Full Potential Equation For Three-Dimensional, Steady, Transonic Wing Flows, Li-Chuan Chu Apr 1988

Integral Equation Solution Of The Full Potential Equation For Three-Dimensional, Steady, Transonic Wing Flows, Li-Chuan Chu

Mechanical & Aerospace Engineering Theses & Dissertations

An integral equation method for solving the full potential equation has been developed for three dimensional transonic vortex-wing flows. This method is capable of capturing shocks using the Murman-Cole type of finite difference scheme and is capable of predicting accurate and force-free wake shape as well.

Reading the full potential equation as Poisson's equation, the solution for the velocity field has been expressed in terms of an integral equation using Green's theorem. The solution consists of a surface integral of vorticity distribution on the wing and its free-vortex sheets and a volume integral of source distribution within a computational region …