Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Assessment Of Cable Length Limit For Effective Protection By Z-Source Circuit Breakers In Dc Power Networks, Ruiyun Fu, Sagar Bhatta, Joseph M. Keller, Yucheng Zhang Jan 2021

Assessment Of Cable Length Limit For Effective Protection By Z-Source Circuit Breakers In Dc Power Networks, Ruiyun Fu, Sagar Bhatta, Joseph M. Keller, Yucheng Zhang

Electrical & Computer Engineering Faculty Publications

This paper introduces groundbreaking research on how to assess the Cable Length Limit (CLL) to ensure effective protection by Z-source Circuit Breakers (ZCBs) in DC power networks. It has been revealed that the line parameters of power cables have a significant impact on the cutoff performance of ZCBs. The question of assessing the CLL has been raised as an unsolved problem. In this paper, a method of CLL assessment is proposed based on physical models and simulation tests. To verify the proposed method, two studies were performed to assess the Cable Length Limits depending on fault levels and power delivery …


Assessment Of Cu(In, Ga)Se₂ Solar Cells Degradation Due To Water Ingress Effect On The Cds Buffer Layer, Deewakar Poudel, Benjamin Belfore, Shankar Karki, Grace Rajan, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac Jan 2021

Assessment Of Cu(In, Ga)Se₂ Solar Cells Degradation Due To Water Ingress Effect On The Cds Buffer Layer, Deewakar Poudel, Benjamin Belfore, Shankar Karki, Grace Rajan, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

The effect of water ingress on the surface of the buffer layer of a Cu(In, Ga)Se2 (CIGS) solar cell was studied. Such degradation can occur either during the fabrication process, if it involves a chemical bath as is often the case for CdS, or while the modules are in the field and encapsulants degrade. To simulate the impact of this moisture ingress, devices with a structure sodalime glass/Mo/CIGS/CdS were immersed in deionized water. The thin films were then analyzed both pre and post water soaking. Dynamic secondary ion mass spectroscopy (SIMS) was performed on completed devices to analyze impurity diffusion …


Cylindrical Magnetron Development For Nb₃Sn Deposition Via Magnetron Sputtering, Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, A-M. Valente-Feliciano Jan 2021

Cylindrical Magnetron Development For Nb₃Sn Deposition Via Magnetron Sputtering, Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, A-M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Due to its better superconducting properties (critical temperature Tc~ 18.3 K, superheating field Hsh~ 400 mT), Nb3Sn is considered as a potential alternative to niobium (Tc~ 9.25 K, Hsh~ 200 mT) for superconducting radiofrequency (SRF) cavities for particle acceleration. Magnetron sputtering is an effective method to produce superconducting Nb3Sn films. We deposited superconducting Nb3Sn films on samples with magnetron sputtering using co-sputtering, sequential sputtering, and sputtering from a stoichiometric target. Nb3Sn films produced by magnetron sputtering in our previous experiments have achieved DC superconducting critical temperature up to …


Matters Of Biocybersecurity With Consideration To Propaganda Outlets And Biological Agents, Xavier-Lewis Palmer, Ernestine Powell, Lucas Potter, Thaddeus Eze (Ed.), Lee Speakman (Ed.), Cyril Onwubiko (Ed.) Jan 2021

Matters Of Biocybersecurity With Consideration To Propaganda Outlets And Biological Agents, Xavier-Lewis Palmer, Ernestine Powell, Lucas Potter, Thaddeus Eze (Ed.), Lee Speakman (Ed.), Cyril Onwubiko (Ed.)

Electrical & Computer Engineering Faculty Publications

The modern era holds vast modalities in human data utilization. Within Biocybersecurity (BCS), categories of biological information, especially medical information transmitted online, can be viewed as pathways to destabilize organizations. Therefore, analysis of how the public, along with medical providers, process such data, and the methods by which false information, particularly propaganda, can be used to upset the flow of verified information to populations of medical professionals, is important for maintenance of public health. Herein, we discuss some interplay of BCS within the scope of propaganda and considerations for navigating the field.


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes …


Deep Neural Network Analysis Of Pathology Images With Integrated Molecular Data For Enhanced Glioma Classification And Grading, Linmin Pei, Karra A. Jones, Zeina A. Shboul, James Y. Chen, Khan M. Iftekharuddin Jan 2021

Deep Neural Network Analysis Of Pathology Images With Integrated Molecular Data For Enhanced Glioma Classification And Grading, Linmin Pei, Karra A. Jones, Zeina A. Shboul, James Y. Chen, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This criteria for glioma classification requires the integration of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-to-date recommendations for CNS tumor classification, which in turn the WHO is expected to adopt in its upcoming edition. In this work, we propose a novel …


Low-Temperature Gas Plasma Combined With Antibiotics For The Reduction Of Methicillin-Resistant Staphylococcus Aureus Biofilm Both In Vitro And In Vivo, Li Guo, Lu Yang, Yu Qi, Gulimire Niyazi, Jianbao Zheng, Ruobing Xu, Xusong Chen, Jingye Zhang, Wang Xi, Dingxin Liu, Xiaohua Wang, Hailan Chen, Michael G. Kong Jan 2021

Low-Temperature Gas Plasma Combined With Antibiotics For The Reduction Of Methicillin-Resistant Staphylococcus Aureus Biofilm Both In Vitro And In Vivo, Li Guo, Lu Yang, Yu Qi, Gulimire Niyazi, Jianbao Zheng, Ruobing Xu, Xusong Chen, Jingye Zhang, Wang Xi, Dingxin Liu, Xiaohua Wang, Hailan Chen, Michael G. Kong

Electrical & Computer Engineering Faculty Publications

Biofilm infections in wounds seriously delay the healing process, and methicillin-resistant Staphylococcus aureus is a major cause of wound infections. In addition to inactivating micro-organisms, low-temperature gas plasma can restore the sensitivity of pathogenic microbes to antibiotics. However, the combined treatment has not been applied to infectious diseases. In this study, low-temperature gas plasma treatment promoted the effects of different antibiotics on the reduction of S. aureus biofilms in vitro. Low-temperature gas plasma combined with rifampicin also effectively reduced the S. aureus cells in biofilms in the murine wound infection model. The blood and histochemical analysis demonstrated the biosafety of …


Plasma-Treated Solutions (Pts) In Cancer Therapy, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi Jan 2021

Plasma-Treated Solutions (Pts) In Cancer Therapy, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to …


Joint Modeling Of Rnaseq And Radiomics Data For Glioma Molecular Characterization And Prediction, Zeina A. Shboul, Norou Diawara, Arastoo Vossough, James Y. Chen, Khan M. Iftekharuddin Jan 2021

Joint Modeling Of Rnaseq And Radiomics Data For Glioma Molecular Characterization And Prediction, Zeina A. Shboul, Norou Diawara, Arastoo Vossough, James Y. Chen, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

RNA sequencing (RNAseq) is a recent technology that profiles gene expression by measuring the relative frequency of the RNAseq reads. RNAseq read counts data is increasingly used in oncologic care and while radiology features (radiomics) have also been gaining utility in radiology practice such as disease diagnosis, monitoring, and treatment planning. However, contemporary literature lacks appropriate RNA-radiomics (henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive and also preserves the nature of RNAseq read counts data for glioma grading and prediction. The Negative Binomial (NB) distribution may be useful to model RNAseq read counts data that addresses potential shortcomings. …


Converting Optical Videos To Infrared Videos Using Attention Gan And Its Impact On Target Detection And Classification Performance, Mohammad Shahab Uddin, Reshad Hoque, Kazi Aminul Islam, Chiman Kwan, David Gribben, Jiang Li Jan 2021

Converting Optical Videos To Infrared Videos Using Attention Gan And Its Impact On Target Detection And Classification Performance, Mohammad Shahab Uddin, Reshad Hoque, Kazi Aminul Islam, Chiman Kwan, David Gribben, Jiang Li

Electrical & Computer Engineering Faculty Publications

To apply powerful deep-learning-based algorithms for object detection and classification in infrared videos, it is necessary to have more training data in order to build high-performance models. However, in many surveillance applications, one can have a lot more optical videos than infrared videos. This lack of IR video datasets can be mitigated if optical-to-infrared video conversion is possible. In this paper, we present a new approach for converting optical videos to infrared videos using deep learning. The basic idea is to focus on target areas using attention generative adversarial network (attention GAN), which will preserve the fidelity of target areas. …


Rapid Quantification Of Biofouling With An Inexpensive, Underwater Camera And Image Analysis, Matthew R. First, Scott C. Riley, Kazi Aminul Islam, Victoria Hill, Jiang Li, Richard C. Zimmerman, Lisa A. Drake Jan 2021

Rapid Quantification Of Biofouling With An Inexpensive, Underwater Camera And Image Analysis, Matthew R. First, Scott C. Riley, Kazi Aminul Islam, Victoria Hill, Jiang Li, Richard C. Zimmerman, Lisa A. Drake

Electrical & Computer Engineering Faculty Publications

To reduce the transport of potentially invasive species on ships' submerged surfaces, rapid-and accurate-estimates of biofouling are needed so shipowners and regulators can effectively assess and manage biofouling. This pilot study developed a model approach for that task. First, photographic images were collected in situ with a submersible, inexpensive pocket camera. These images were used to develop image processing algorithms and train machine learning models to classify images containing natural assemblages of fouling organisms. All of the algorithms and models were implemented in a widely available software package (MATLAB©). Initially, an unsupervised clustering model was used, and three …


Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang Jan 2021

Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang

Electrical & Computer Engineering Faculty Publications

Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The …


Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe Jan 2021

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

There is considerable interest in the application of quantum information science to advance computations in plasma physics. A particular point of curiosity is whether it is possible to take advantage of quantum computers to speed up numerical simulations relative to conventional computers. Many of the topics in fusion plasma physics are classical in nature. In order to implement them on quantum computers, it will require couching a classical problem in the language of quantum mechanics. Electromagnetic waves are routinely used in fusion experiments to heat a plasma or to generate currents in the plasma. The propagation of electromagnetic waves is …


Formal Power Series Approach To Nonlinear Systems With Static Output Feedback, G.S. Venkatesh, W. Steven Gray Jan 2021

Formal Power Series Approach To Nonlinear Systems With Static Output Feedback, G.S. Venkatesh, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

The goal of this paper is to compute the generating series of a closed-loop system when the plant is described in terms of a Chen-Fliess series and static output feedback is applied. The first step is to reconsider the so called Wiener-Fliess connection consisting of a Chen-Fliess series followed by a memoryless function. Of particular importance will be the contractive nature of this map, which is needed to show that the closed-loop system has a Chen-Fliess series representation. To explicitly compute the generating series, two Hopf algebras are needed, the existing output feedback Hopf algebra used to describe dynamic output …


Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding Jan 2021

Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding

Electrical & Computer Engineering Faculty Publications

Model continuity plays an important role in applications like system identification, adaptive control, and machine learning. This paper provides sufficient conditions under which input-output systems represented by locally convergent Chen-Fliess series are jointly continuous with respect to their generating series and as operators mapping a ball in an Lp-space to a ball in an Lq-space, where p and q are conjugate exponents. The starting point is to introduce a class of topological vector spaces known as Silva spaces to frame the problem and then to employ the concept of a direct limit to describe convergence. The proof of the main …


Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali Jan 2021

Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali

Electrical & Computer Engineering Faculty Publications

The fluid models are frequently used to describe a non-thermal plasma such as a streamer discharge. The required electron transport data and rate coefficients for the fluid model are parametrized using the local field approximation (LFA) in first order models and the local-mean-energy approximation (LMEA) in second order models. We performed Monte Carlo simulations in Nitrogen gas with step changes in the E/N (reduced electric field) to study the behavior of the transport properties in the transient phase. During the transient phase of the simulation, we extract the instantaneous electron mean energy, which is different from the steady state mean …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman Jan 2021

High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman

Electrical & Computer Engineering Faculty Publications

High-energy nuclear physics experiments at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF) require highly spin-polarization electron beams, produced from strained super-lattice GaAs photocathodes, activated to negative electron affinity in a photogun operating at 130 kV dc. A pair of Wien filter spin rotators in the injector defines the orientation of the electron beam polarization at the end station target. An upgrade of the CEBAF injector to better support the upcoming MOLLER experiment requires increasing the electron beam energy to 200 keV, to reduce unwanted helicity correlated intensity and position systematics and provide precise control of the polarization orientation. …


Simulation Studies On The Interactions Of Electron Beam With Wastewater, X. Li, S. Wang, Helmut Baumgart, G. Ciovati, F. Hannon Jan 2021

Simulation Studies On The Interactions Of Electron Beam With Wastewater, X. Li, S. Wang, Helmut Baumgart, G. Ciovati, F. Hannon

Electrical & Computer Engineering Faculty Publications

The manufactured chemical pollutants, like 1,4 dioxane and PFAS (per- and polyfluroralkyl substances), found in the underground water and/or drinking water are challenging to be removed or biodegraded. Energetic electrons are capable of mediating and removing them. This paper utilizes FLUKA code to evaluate the beam-wastewater interaction effects with different energy, space and divergence distributions of the electron beam. With 8 MeV average energy, the electron beam exits from a 0.0127 cm thick titanium window, travels through a 4.3 cm distance air and a second 0.0127 cm thick stainless water container window with 2.43 cm radius, and finally is injected …


Logical Modeling Of Adiabatic Logic Circuits Using Vhdl, Lee Belfore Jan 2021

Logical Modeling Of Adiabatic Logic Circuits Using Vhdl, Lee Belfore

Electrical & Computer Engineering Faculty Publications

The underlying nature of adiabatic circuits is most accurately characterized at the circuit level as it is for traditional technologies. In order to scale system designs for adiabatic logic technologies, modeling of adiabatic circuits at the logic level is necessary. Logic level models of adiabatic logic circuits can facilitate the design, development, and verification of large scale digital systems that may be infeasible using circuit simulators. Adiabatic logic circuits can be powered with a four stage power clock consisting of idle, charge, hold, and recover stages that provides for adiabatic charging and charge recovery to give adiabatic circuits their low …


Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a CW recirculating linac that utilizes over 400 superconducting radio-frequency (SRF) cavities to accelerate electrons up to 12 GeV through 5-passes. Recent work has shown that, given RF signals from a cavity during a fault as input, machine learning approaches can accurately classify the fault type. In this paper we report on initial results of predicting a fault onset using only data prior to the failure event. A data set was constructed using time-series data immediately before a fault (’unstable’) and 1.5 seconds prior to a fault (’stable’) gathered …


Covid-19 And Biocybersecurity's Increasing Role On Defending Forward, Xavier Palmer, Lucas N. Potter, Saltuk Karahan Jan 2021

Covid-19 And Biocybersecurity's Increasing Role On Defending Forward, Xavier Palmer, Lucas N. Potter, Saltuk Karahan

Electrical & Computer Engineering Faculty Publications

The evolving nature of warfare has been changing with cybersecurity and the use of advanced biotechnology in each aspect of the society is expanding and overlapping with the cyberworld. This intersection, which has been described as “biocybersecurity” (BCS), can become a major front of the 21st-century conflicts. There are three lines of BCS which make it a critical component of overall cybersecurity: (1) cyber operations within the area of BCS have life threatening consequences to a greater extent than other cyber operations, (2) the breach in health-related personal data is a significant tool for fatal attacks, and (3) health-related misinformation …


Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart Jan 2021

Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

This investigation on Metal-Organic Framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport and p-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF …


Fault Protection Considerations For Mvdc Shipboard Power Systems Operating With Pulsed-Power Loads, Marounfa Djibo, Paul Moses, Ike Flory Jan 2021

Fault Protection Considerations For Mvdc Shipboard Power Systems Operating With Pulsed-Power Loads, Marounfa Djibo, Paul Moses, Ike Flory

Electrical & Computer Engineering Faculty Publications

Medium Voltage Direct Current (MVDC) power distribution architectures are of immense interest for various shipboard power applications due to their advantages over classical MVAC distribution systems with respect to power quality, power density, and efficiency. However, MVDC are far away from maturity when compared to MVAC with respect to fault detection and isolation. Currently, there are no standards available for applying MVDC protection systems in shipboard applications. Furthermore, due to the absence of zero crossings in DC waveforms and unique transient fault signatures, it is challenging to design effective protection system schemes to isolate faults via conventional protection systems. This …


Monopolar Gene Electrotransfer Enhances Plasmid Dna Delivery To Skin, Anna Bulysheva, Loree Heller, Michael Francis, Frency Varghese, Carly Boye, Richard Heller Jan 2021

Monopolar Gene Electrotransfer Enhances Plasmid Dna Delivery To Skin, Anna Bulysheva, Loree Heller, Michael Francis, Frency Varghese, Carly Boye, Richard Heller

Electrical & Computer Engineering Faculty Publications

A novel monopolar electroporation system and methodologies were developed for in vivo electroporation intended for potential clinical applications such as gene therapy. We hypothesized that an asymmetric anode/cathode electrode applicator geometry could produce favorable electric fields for electroporation, without the typical drawback associated with traditional needle and parallel plate geometries. Three monopolar electrode applicator prototypes were built and tested for gene delivery of reporter genes to the skin in a guinea pig model. Gene expression was evaluated in terms of kinetics over time and expression distribution within the treatment site. Different pulsing parameters, including pulse amplitude, pulse duration, and pulse …


A Case Study: Influence Of Circuit Impedance On The Performance Of Class-E² Resonant Power Converter For Capacitive Wireless Power Transfer, Yashwanth Bezawada, Yucheng Zhang Jan 2021

A Case Study: Influence Of Circuit Impedance On The Performance Of Class-E² Resonant Power Converter For Capacitive Wireless Power Transfer, Yashwanth Bezawada, Yucheng Zhang

Electrical & Computer Engineering Faculty Publications

The evolution of power electronics led to rapid development in wireless charging technology; as a result, a single active switch topology was introduced. The present market utilizes inductive wireless power transfer (IPT); because of the disadvantages of cost, size, and safety concerns, research on wireless power transfer was diverted towards capacitive wireless power transfer (CPT). This paper studies the optimal impedance tracking of the capacitive wireless power transfer system for maximum power transfer. Compared to prior methods developed for maximum power point tracking in power control, this paper proposes a new approach by means of finding impedance characteristics of the …


Using Ai For Management Of Field Emission In Srf Linacs, A. Carpenter, P. Degtiarenko, R. Suleiman, C. Tennant, D. Turner, L. S. Vidyaratne, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Using Ai For Management Of Field Emission In Srf Linacs, A. Carpenter, P. Degtiarenko, R. Suleiman, C. Tennant, D. Turner, L. S. Vidyaratne, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

Field emission control, mitigation, and reduction is critical for reliable operation of high gradient superconducting radio-frequency (SRF) accelerators. With the SRF cavities at high gradients, the field emission of electrons from cavity walls can occur and will impact the operational gradient, radiological environment via activated components, and reliability of CEBAF’s two linacs. A new effort has started to minimize field emission in the CEBAF linacs by re-distributing cavity gradients. To measure radiation levels, newly designed neutron and gamma radiation dose rate monitors have been installed in both linacs. Artificial intelligence (AI) techniques will be used to identify cavities with high …