Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Groundwater

Earth Sciences

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data, Ryan G. Smith, R. Knight Apr 2019

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data, Ryan G. Smith, R. Knight

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Land subsidence as a result of groundwater overpumping in the San Joaquin Valley, California, is associated with the loss of groundwater storage and aquifer contamination. Although the physical processes governing land subsidence are well understood, building predictive models of subsidence is challenging because so much subsurface information is required to do so accurately. For the first time, we integrate airborne electromagnetic data, representing the subsurface, with subsidence data, mapped by interferometric synthetic aperture radar (InSAR), to model deformation. By combining both data sets, we are able to solve for hydrologic and geophysical properties of the subsurface to effectively model the …


Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data: Dataset, Ryan G. Smith, R. Knight Jan 2019

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data: Dataset, Ryan G. Smith, R. Knight

Research Data

Supporting dataset for article published in Water Resources Research, Volume 55, Issue 4, pages 2801-2819


Hydrogeophysical Investigation At Luxor, Southern Egypt, Ahmed Ismail, Neil Lennart Anderson, J. David Rogers Mar 2005

Hydrogeophysical Investigation At Luxor, Southern Egypt, Ahmed Ismail, Neil Lennart Anderson, J. David Rogers

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Over the past 35 years, the exposed stone foundations of the ancient Egyptian monuments at Luxor have deteriorated at an alarmingly accelerated rate. Accelerated deterioration is attributable to three principal factors: 1) excavation and exposure of foundation stone; 2) construction of the Aswan High Dam; and 3) changes in the regional groundwater regime. In an effort to better elucidate the hydrostratigraphy in the Luxor study area that extends from the River Nile to the boundaries of the Nile Valley and covers about 70 km2, a geophysical/hydrological investigation was conducted. Forty Schlumberger vertical electrical soundings (VES), two approximately 6 …