Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Engineering

Optimization In Microgrid Design And Energy Management, Tu Anh Nguyen Jan 2014

Optimization In Microgrid Design And Energy Management, Tu Anh Nguyen

Doctoral Dissertations

"The dissertation is composed of three papers, which cover microgrid systems performance characterization, optimal sizing for energy storage system and stochastic optimization of microgrid operation. In the first paper, a complete Photovoltaic-Vanadium Redox Battery (VRB) microgrid is characterized holistically. The analysis is based on a prototype system installation deployed at Fort Leonard Wood, Missouri, USA. In the second paper, the optimal sizing of power and energy ratings for a VRB system in isolated and grid-connected microgrids is proposed. An analytical method is developed to solve the problem based on a per-day cost model in which the operating cost is obtained …


Issues On Stability Of Adp Feedback Controllers For Dynamical Systems, S. N. Balakrishnan, Jie Ding, F. L. Lewis Aug 2008

Issues On Stability Of Adp Feedback Controllers For Dynamical Systems, S. N. Balakrishnan, Jie Ding, F. L. Lewis

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper traces the development of neural-network (NN)-based feedback controllers that are derived from the principle of adaptive/approximate dynamic programming (ADP) and discusses their closed-loop stability. Different versions of NN structures in the literature, which embed mathematical mappings related to solutions of the ADP-formulated problems called “adaptive critics” or “action-critic” networks, are discussed. Distinction between the two classes of ADP applications is pointed out. Furthermore, papers in “model-free” development and model-based neurocontrollers are reviewed in terms of their contributions to stability issues. Recent literature suggests that work in ADP-based feedback controllers with assured stability is growing in diverse forms.


Hamilton-Jacobi-Bellman Equations And Approximate Dynamic Programming On Time Scales, John E. Seiffertt Iv, Suman Sanyal, Donald C. Wunsch Aug 2008

Hamilton-Jacobi-Bellman Equations And Approximate Dynamic Programming On Time Scales, John E. Seiffertt Iv, Suman Sanyal, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.


A Quantum Calculus Formulation Of Dynamic Programming And Ordered Derivatives, John E. Seiffertt Iv, Donald C. Wunsch Jun 2008

A Quantum Calculus Formulation Of Dynamic Programming And Ordered Derivatives, John E. Seiffertt Iv, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Much recent research activity has focused on the theory and application of quantum calculus. This branch of mathematics continues to find new and useful applications and there is much promise left for investigation into this field. We present a formulation of dynamic programming grounded in the quantum calculus. Our results include the standard dynamic programming induction algorithm which can be interpreted as the Hamilton-Jacobi-Bellman equation in the quantum calculus. Furthermore, we show that approximate dynamic programming in quantum calculus is tenable by laying the groundwork for the backpropagation algorithm common in neural network training. In particular, we prove that the …


Dynamic Programming-Based Energy-Efficient Rate Adaptation For Wireless Ad Hoc Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani Nov 2006

Dynamic Programming-Based Energy-Efficient Rate Adaptation For Wireless Ad Hoc Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Resource constraints require that ad hoc wireless networks are energy efficient during transmission and rate adaptation. In this paper we propose a novel cross-layer energy-efficient rate adaptation scheme that employs dynamic programming (DP) principle to analytically select the modulation scheme online. The scheme uses channel state information from the physical layer and congestion information from the scheduling layer to select a modulation rate. This online selection maximizes throughput while saving energy and preventing congestion. The simulation results indicate that an increase in throughput by 96% and energy-efficiency by 131% is observed when compared to the Receiver Based AutoRate (RBAR) protocol.


Hdp Based Optimal Control Of A Grid Independent Pv System, Richard L. Welch, Ganesh K. Venayagamoorthy Jan 2006

Hdp Based Optimal Control Of A Grid Independent Pv System, Richard L. Welch, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents an adaptive optimal control scheme for a grid independent photovoltaic (PV) system consisting of a PV collector array, a storage battery, and loads (critical and non-critical loads). The optimal control algorithm is based on the model-free heuristic dynamic programming (HDP), an adaptive critic design (ACD) technique which optimizes the control performance based on a utility function. The HDP critic network is used in a PV system simulation study to train a neurocontroller to provide optimal control for varying PV system output energy and load demands. The emphasis of the optimal controller is primarily to supply the critical …


Adaptive Critic Design Based Neuro-Fuzzy Controller For A Static Compensator In A Multimachine Power System, Salman Mohagheghi, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2006

Adaptive Critic Design Based Neuro-Fuzzy Controller For A Static Compensator In A Multimachine Power System, Salman Mohagheghi, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel nonlinear optimal controller for a static compensator (STATCOM) connected to a power system, using artificial neural networks and fuzzy logic. The action dependent heuristic dynamic programming, a member of the adaptive Critic designs family, is used for the design of the STATCOM neuro-fuzzy controller. This neuro-fuzzy controller provides optimal control based on reinforcement learning and approximate dynamic programming. Using a proportional-integrator approach the proposed controller is capable of dealing with actual rather than deviation signals. The STATCOM is connected to a multimachine power system. Two multimachine systems are considered in this study: a 10-bus system …


New External Neuro-Controller For Series Capacitive Reactance Compensator In A Power Network, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2004

New External Neuro-Controller For Series Capacitive Reactance Compensator In A Power Network, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The controllable capacitive reactance can be used as the input variable for the external controller of a series capacitive reactance compensator (SCRC) to improve the damping of low-frequency oscillations of the rotor angle and active power in a power system. Conventional linear PI controllers are tuned for best performance at one specific operating point of the nonlinear power system. At other operating point its performance degrades. Nonlinear optimal neuro-controllers are able to overcome this degradation. In this paper, the dual heuristic dynamic programming (DHP) optimization algorithm is applied to design an external nonlinear optimal neuro-controller for the SCRC. Simulation studies …


Optimal Control Synthesis Of A Class Of Nonlinear Systems Using Single Network Adaptive Critics, Radhakant Padhi, Nishant Unnikrishnan, S. N. Balakrishnan Jan 2004

Optimal Control Synthesis Of A Class Of Nonlinear Systems Using Single Network Adaptive Critics, Radhakant Padhi, Nishant Unnikrishnan, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Adaptive critic (AC) neural network solutions to optimal control designs using dynamic programming has reduced the need of complex computations and storage requirements that typical dynamic programming requires. In this paper, a "single network adaptive critic" (SNAC) is presented. This approach is applicable to a class of nonlinear systems where the optimal control (stationary) equation is explicitly solvable for control in terms of state and costate variables. The SNAC architecture offers three potential advantages; a simpler architecture, significant savings of computational load and reduction in approximation errors. In order to demonstrate these benefits, a real-life micro-electro-mechanical-system (MEMS) problem has been …


Adaptive Critic Designs And Their Implementations On Different Neural Network Architectures, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

Adaptive Critic Designs And Their Implementations On Different Neural Network Architectures, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The design of nonlinear optimal neurocontrollers based on the Adaptive Critic Designs (ACDs) family of algorithms has recently attracted interest. This paper presents a summary of these algorithms, and compares their performance when implemented on two different types of artificial neural networks, namely the multilayer perceptron neural network (MLPNN) and the radial basis function neural network (RBFNN). As an example for the application of the ACDs, the control of synchronous generator on an electric power grid is considered and results are presented to compare the different ACD family members and their implementations on different neural network architectures.


Adaptive-Critic-Based Optimal Neurocontrol For Synchronous Generators In A Power System Using Mlp/Rbf Neural Networks, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

Adaptive-Critic-Based Optimal Neurocontrol For Synchronous Generators In A Power System Using Mlp/Rbf Neural Networks, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel optimal neurocontroller that replaces the conventional controller (CONVC), which consists of the automatic voltage regulator and turbine governor, to control a synchronous generator in a power system using a multilayer perceptron neural network (MLPN) and a radial basis function neural network (RBFN). The heuristic dynamic programming (HDP) based on the adaptive critic design technique is used for the design of the neurocontroller. The performance of the MLPN-based HDP neurocontroller (MHDPC) is compared with the RBFN-based HDP neurocontroller (RHDPC) for small as well as large disturbances to a power system, and they are in turn compared …


Approximate Dynamic Programming Based Optimal Neurocontrol Synthesis Of A Chemical Reactor Process Using Proper Orthogonal Decomposition, Radhakant Padhi, S. N. Balakrishnan Jan 2003

Approximate Dynamic Programming Based Optimal Neurocontrol Synthesis Of A Chemical Reactor Process Using Proper Orthogonal Decomposition, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The concept of approximate dynamic programming and adaptive critic neural network based optimal controller is extended in this study to include systems governed by partial differential equations. An optimal controller is synthesized for a dispersion type tubular chemical reactor, which is governed by two coupled nonlinear partial differential equations. It consists of three steps: First, empirical basis functions are designed using the "Proper Orthogonal Decomposition" technique and a low-order lumped parameter system to represent the infinite-dimensional system is obtained by carrying out a Galerkin projection. Second, approximate dynamic programming technique is applied in a discrete time framework, followed by the …


Adaptive Critic Design Based Neurocontroller For A Statcom Connected To A Power System, Salman Mohagheghi, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

Adaptive Critic Design Based Neurocontroller For A Statcom Connected To A Power System, Salman Mohagheghi, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

A novel nonlinear optimal neurocontroller for a static compensator (STATCOM) connected to a power system using artificial neural networks is presented in this paper. The heuristic dynamic programming (HDP), a member of the adaptive critic designs (ACDs) family, is used for the design of the STATCOM neurocontroller. This neurocontroller provides nonlinear optimal control with better performance compared to the conventional PI controllers.


A Heuristic Dynamic Programming Based Power System Stabilizer For A Turbogenerator In A Single Machine Power System, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch Jan 2003

A Heuristic Dynamic Programming Based Power System Stabilizer For A Turbogenerator In A Single Machine Power System, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, a novel design of power system stabilizer (PSS) based on heuristic dynamic programming (HDP) is proposed in this paper. HDP combining the concepts of dynamic programming and reinforcement learning is used in the design of a nonlinear optimal power system stabilizer. The proposed HDP based PSS is evaluated against the conventional power …


Comparison Of Heuristic Dynamic Programming And Dual Heuristic Programming Adaptive Critics For Neurocontrol Of A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2002

Comparison Of Heuristic Dynamic Programming And Dual Heuristic Programming Adaptive Critics For Neurocontrol Of A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents the design of an optimal neurocontroller that replaces the conventional automatic voltage regulator (AVR) and the turbine governor for a turbogenerator connected to the power grid. The neurocontroller design uses a novel technique based on the adaptive critic designs (ACDs), specifically on heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Results show that both neurocontrollers are robust, but that DHP outperforms HDP or conventional controllers, especially when the system conditions and configuration change. This paper also shows how to design optimal neurocontrollers for nonlinear systems, such as turbogenerators, without having to do continually online training of …


Abnormal Cell Detection Using The Choquet Integral, R. Joe Stanley, James M. Keller, Charles William Caldwell, Paul D. Gader Jul 2001

Abnormal Cell Detection Using The Choquet Integral, R. Joe Stanley, James M. Keller, Charles William Caldwell, Paul D. Gader

Electrical and Computer Engineering Faculty Research & Creative Works

Automated Giemsa-banded chromosome image research has been largely restricted to classification schemes associated with isolated chromosomes within metaphase spreads. In normal human metaphase spreads, there are 46 chromosomes occurring in homologous pairs for the autosomal classes 1-22 and the X chromosome for females. Many genetic abnormalities are directly linked to structural and/or numerical aberrations of chromosomes within metaphase spreads. Cells with the Philadelphia chromosome contain an abnormal chromosome for class 9 and for class 22, leaving a single normal chromosome for each class. A data-driven homologue matching technique is applied to recognizing normal chromosomes from classes 9 and 22. Homologue …


A Parallel Computer-Go Player, Using Hdp Method, Donald C. Wunsch, Xindi Cai Jan 2001

A Parallel Computer-Go Player, Using Hdp Method, Donald C. Wunsch, Xindi Cai

Electrical and Computer Engineering Faculty Research & Creative Works

The game of Go has simple rules to learn but requires complex strategies to play well, and, the conventional tree search algorithm for computer games is not suited for Go program. Thus, the game of Go is an ideal problem domain for machine learning algorithms. This paper examines the performance of a 19x19 computer Go player, using heuristic dynamic programming (HDP) and parallel alpha-beta search. The neural network based Go player learns good Go evaluation functions and wins about 30% of the games in a test series on 19x19 board


Dynamic Re-Optimization Of A Fed-Batch Fermentor Using Adaptive Critic Designs, Donald C. Wunsch, M. S. Iyer Jan 2001

Dynamic Re-Optimization Of A Fed-Batch Fermentor Using Adaptive Critic Designs, Donald C. Wunsch, M. S. Iyer

Electrical and Computer Engineering Faculty Research & Creative Works

Traditionally, fed-batch biochemical process optimization and control uses complicated off-line optimizers, with no online model adaptation or re-optimization. This study demonstrates the applicability of a class of adaptive critic designs for online re-optimization and control of an aerobic fed-batch fermentor. Specifically, the performance of an entire class of adaptive critic designs, viz., heuristic dynamic programming, dual heuristic programming and generalized dual heuristic programming, was demonstrated to be superior to that of a heuristic random optimizer, on optimization of a fed-batch fermentor operation producing monoclonal antibodies


Exercising Real Unit Operational Options Under Price Uncertainty, Chung-Li Tseng Jan 2000

Exercising Real Unit Operational Options Under Price Uncertainty, Chung-Li Tseng

Engineering Management and Systems Engineering Faculty Research & Creative Works

In this paper, we use the real options framework to value the operation flexibility of a power plant. The power plant operation is formulated as a multi-stage stochastic problem. We assume that there are hourly spot markets for both electricity and the fuel used by the generator, and that their prices follow some Ito processes. At each hour, the power plant operator must decide whether or not to run the unit so as to maximize expected profit. However, the unit operation is subject to decision lead times and minimum uptime and downtime constraints, so the commitment decision must take into …


Convergence Analysis Of Adaptive Critic Based Optimal Control, S. N. Balakrishnan, Xin Liu Jan 2000

Convergence Analysis Of Adaptive Critic Based Optimal Control, S. N. Balakrishnan, Xin Liu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Adaptive critic based neural networks have been found to be powerful tools in solving various optimal control problems. The adaptive critic approach consists of two neural networks which output the control values and the Lagrangian multipliers associated with optimal control. These networks are trained successively and when the outputs of the two networks are mutually consistent and satisfy the differential constraints, the controller network output produces optimal control. In this paper, we analyze the mechanics of convergence of the network solutions. We establish the necessary conditions for the network solutions to converge and show that the converged solution is optimal.


Infinite Time Optimal Neuro Control For Distributed Parameter Systems, S. N. Balakrishnan, Radhakant Padhi Jan 2000

Infinite Time Optimal Neuro Control For Distributed Parameter Systems, S. N. Balakrishnan, Radhakant Padhi

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The conventional dynamic programming methodology for the solution of optimal control, despite having many desirable features, is severely restricted by its computational requirements. However, in recent times, an alternate formulation, known as the adaptive-critic synthesis, has given it a new perspective. In this paper, we have attempted to use the philosophy of adaptive-critic design to the optimal control of distributed parameter systems. An important contribution of this study is the derivation of the necessary conditions of optimality for distributed parameter systems, described in discrete domain, following the principle of approximate dynamic programming. Then the derived necessary conditions of optimality are …


Neurocontroller Alternatives For "Fuzzy" Ball-And-Beam Systems With Nonuniform Nonlinear Friction, Danil V. Prokhorov, Donald C. Wunsch, Paul H. Eaton Jan 2000

Neurocontroller Alternatives For "Fuzzy" Ball-And-Beam Systems With Nonuniform Nonlinear Friction, Danil V. Prokhorov, Donald C. Wunsch, Paul H. Eaton

Electrical and Computer Engineering Faculty Research & Creative Works

The ball-and-beam problem is a benchmark for testing control algorithms. Zadeh proposed (1994) a twist to the problem, which, he suggested, would require a fuzzy logic controller. This experiment uses a beam, partially covered with a sticky substance, increasing the difficulty of predicting the ball's motion. We complicated this problem even more by not using any information concerning the ball's velocity. Although it is common to use the first differences of the ball's consecutive positions as a measure of velocity and explicit input to the controller, we preferred to exploit recurrent neural networks, inputting only consecutive positions instead. We have …


Comparison Of A Heuristic Dynamic Programming And A Dual Heuristic Programming Based Adaptive Critics Neurocontroller For A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2000

Comparison Of A Heuristic Dynamic Programming And A Dual Heuristic Programming Based Adaptive Critics Neurocontroller For A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents the design of a neurocontroller for a turbogenerator that augments/replaces the conventional automatic voltage regulator and the turbine governor. The neurocontroller uses a novel technique based on the adaptive critic designs with emphasis on heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Results are presented to show that the DHP based neurocontroller is robust and performs better than the HDP based neurocontroller, as well as the conventional controller, especially when the system conditions and configuration changes.


Dynamic Re-Optimization Of A Fed-Batch Fermentor Using Heuristic Dynamic Programming, Donald C. Wunsch, M. S. Iyer Jan 1999

Dynamic Re-Optimization Of A Fed-Batch Fermentor Using Heuristic Dynamic Programming, Donald C. Wunsch, M. S. Iyer

Electrical and Computer Engineering Faculty Research & Creative Works

Traditionally, fed-batch biochemical process optimization and control uses complicated theoretical off-line optimizers, with no online model adaptation or re-optimization. This study demonstrates the applicability, effectiveness, and economic potential of a simple phenomenological model for modeling, and an adaptive critic design, heuristic dynamic programming, for online re-optimization and control of an aerobic fed-batch fermentor. The results are compared with those obtained using a heuristic random optimizer


Short-Term Generation Asset Valuation, Chung-Li Tseng, G. Barz Jan 1999

Short-Term Generation Asset Valuation, Chung-Li Tseng, G. Barz

Engineering Management and Systems Engineering Faculty Research & Creative Works

We present a method for valuing a power plant over a short term period using Monte Carlo simulation. The power plant valuation problem is formulated as a multi stage stochastic problem. We assume there are hourly markets for both electricity and the fuel used by the generator, and their prices follow some Ito processes. At each hour, the power plant operator must decide to run or not to run the unit so as to maximize expected profit. A certain lead time for commitment decision is necessary to start up a unit. The commitment decision, once made, is subject to physical …


Data-Driven Homologue Matching For Chromosome Identification, R. Joe Stanley, James M. Keller, Paul D. Gader, Charles William Caldwell Jun 1998

Data-Driven Homologue Matching For Chromosome Identification, R. Joe Stanley, James M. Keller, Paul D. Gader, Charles William Caldwell

Electrical and Computer Engineering Faculty Research & Creative Works

Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the …


A Robust Unit Commitment Algorithm For Hydro-Thermal Optimization, Chao-An Li, R. B. Johnson, A. J. Svoboda, Chung-Li Tseng, E. Hsu Jan 1998

A Robust Unit Commitment Algorithm For Hydro-Thermal Optimization, Chao-An Li, R. B. Johnson, A. J. Svoboda, Chung-Li Tseng, E. Hsu

Engineering Management and Systems Engineering Faculty Research & Creative Works

This paper presents a unit commitment algorithm which combines the Lagrangian relaxation (LR), sequential unit commitment (SUC), and optimal unit decommitment (UD) methods to solve a general hydro-thermal optimization (HTO) problem. We argue that this approach retains the advantages of the LR method while addressing the method''s observed weaknesses to improve overall algorithm performance and quality of solution. The proposed approach has been implemented in a version of PG&E''s HTO program, and test results are presented.


Adaptive Critic Designs, Danil V. Prokhorov, Donald C. Wunsch Sep 1997

Adaptive Critic Designs, Danil V. Prokhorov, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

We discuss a variety of adaptive critic designs (ACDs) for neurocontrol. These are suitable for learning in noisy, nonlinear, and nonstationary environments. They have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Our discussion of these origins leads to an explanation of three design families: heuristic dynamic programming, dual heuristic programming, and globalized dual heuristic programming (GDHP). The main emphasis is on DHP and GDHP as advanced ACDs. We suggest two new modifications of the original GDHP design that are currently the only working implementations of GDHP. They promise to be useful for many engineering applications …


A Robust Unit Commitment Algorithm For Hydro-Thermal Optimization, Chao-An Li, Chung-Li Tseng, E. Hsu, R. B. Johnson, A. J. Svoboda May 1997

A Robust Unit Commitment Algorithm For Hydro-Thermal Optimization, Chao-An Li, Chung-Li Tseng, E. Hsu, R. B. Johnson, A. J. Svoboda

Engineering Management and Systems Engineering Faculty Research & Creative Works

This paper presents a unit commitment algorithm which combines the Lagrangian relaxation (LR), sequential unit commitment (SUC), and optimal unit decommitment (UD) methods to solve a general hydro-thermal optimization (HTO) problem. The authors argue that this approach retains the advantages of the LR method while addressing the method''s observed weaknesses to improve overall algorithm performance and quality of solution. The proposed approach has been implemented in a version of PG&E''s HTO program, and test results are presented.


A Dual Neural Network Architecture For Linear And Nonlinear Control Of Inverted Pendulum On A Cart, S. N. Balakrishnan, Victor Biega Jan 1996

A Dual Neural Network Architecture For Linear And Nonlinear Control Of Inverted Pendulum On A Cart, S. N. Balakrishnan, Victor Biega

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The use of a self-contained dual neural network architecture for the solution of nonlinear optimal control problems is investigated in this study. The network structure solves the dynamic programming equations in stages and at the convergence, one network provides the optimal control and the second network provides a fault tolerance to the control system. We detail the steps in design and solve a linearized and a nonlinear, unstable, four-dimensional inverted pendulum on a cart problem. Numerical results are presented and compared with linearized optimal control. Unlike the previously published neural network solutions, this methodology does not need any external training, …