Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Enhanced Two-Step Deep-Learning Approach For Electromagnetic-Inverse-Scattering Problems: Frequency Extrapolation And Scatterer Reconstruction, Huan Huan Zhang, He Ming Yao, Lijun Jiang, Michael Ng Feb 2023

Enhanced Two-Step Deep-Learning Approach For Electromagnetic-Inverse-Scattering Problems: Frequency Extrapolation And Scatterer Reconstruction, Huan Huan Zhang, He Ming Yao, Lijun Jiang, Michael Ng

Electrical and Computer Engineering Faculty Research & Creative Works

The electromagnetic-inverse-scattering (EMIS) problem is solved by a novel two-step deep-learning (DL) approach in this article. The newly proposed two-step DL approach not only predicts the multifrequency EM scattered field, but also overcomes the limitation of the conventional methods for solving EMIS problems, such as expensive computational cost, strong ill-conditions, and invalidity on high contrast. In the first step, the complex-valued deep residual convolutional neural network (DRCNN) is utilized to predict multifrequency EM scattered fields only using single-frequency EM scattered field information. Based on a new complex-valued deep convolutional encoder-decoder (DCED) structure, the second step utilizes the obtained multifrequency EM …


Implementing The Fast Full-Wave Electromagnetic Forward Solver Using The Deep Convolutional Encoder-Decoder Architecture, He Ming Yao, Lijun Jiang, Michael Ng Jan 2023

Implementing The Fast Full-Wave Electromagnetic Forward Solver Using The Deep Convolutional Encoder-Decoder Architecture, He Ming Yao, Lijun Jiang, Michael Ng

Electrical and Computer Engineering Faculty Research & Creative Works

In this communication, a novel deep learning (DL)-based solver is proposed for the electromagnetic forward (EMF) process. It is based on the complex-valued deep convolutional neural networks (DConvNets) comprising an encoder network and a corresponding decoder network with pixel-wise regression layer. The encoder network takes the incident EM wave and the contrast (permittivity) distribution of the object as the input. It channels the processed data into the corresponding decoder network to predict the total EM field due to the scatter of the input incident EM wave. The training of the proposed DConvNets is done using the simple synthetic dataset. Due …


Enhanced Supervised Descent Learning Technique For Electromagnetic Inverse Scattering Problems By The Deep Convolutional Neural Networks, He Ming Yao, Rui Guo, Maokun Li, Lijun Jiang, Michael Kwok Po Ng Aug 2022

Enhanced Supervised Descent Learning Technique For Electromagnetic Inverse Scattering Problems By The Deep Convolutional Neural Networks, He Ming Yao, Rui Guo, Maokun Li, Lijun Jiang, Michael Kwok Po Ng

Electrical and Computer Engineering Faculty Research & Creative Works

This work proposes a novel deep learning (DL) framework to solve the electromagnetic inverse scattering (EMIS) problems. The proposed framework integrates the complex-valued deep convolutional neural network (DConvNet) into the supervised descent method (SDM) to realize both off-line training and on-line 'imaging' prediction for EMIS. The offline training consists of two parts: 1) DConvNet training: the training dataset is created, and the proposed DConvNet is trained to realize the EM forward process and 2) SDM training: the trained DConvNet is integrated into the SDM framework, and the average descent directions between the initial prediction and the true label of SDM …


Classification Of Teleseismic Shear Wave Splitting Measurements: A Convolutional Neural Network Approach, Yanwei Zhang, Stephen S. Gao Jun 2022

Classification Of Teleseismic Shear Wave Splitting Measurements: A Convolutional Neural Network Approach, Yanwei Zhang, Stephen S. Gao

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Shear wave splitting (SWS) analysis is widely used to provide critical constraints on crustal and mantle structure and dynamic models. In order to obtain reliable splitting measurements, an essential step is to visually verify all the measurements to reject problematic measurements, a task that is increasingly time consuming due to the exponential increase in the amount of data. In this study, we utilized a convolutional neural network (CNN) based method to automatically select reliable SWS measurements. The CNN was trained by human-verified teleseismic SWS measurements and tested using synthetic SWS measurements. Application of the trained CNN to broadband seismic data …


Heuristic-Based Automatic Pruning Of Deep Neural Networks, Tejalal Choudhary, Vipul Mishra, Anurag Goswami, Jagannathan Sarangapani Mar 2022

Heuristic-Based Automatic Pruning Of Deep Neural Networks, Tejalal Choudhary, Vipul Mishra, Anurag Goswami, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

The performance of a deep neural network (deep NN) is dependent upon a significant number of weight parameters that need to be trained which is a computational bottleneck. The growing trend of deeper architectures poses a restriction on the training and inference scheme on resource-constrained devices. Pruning is an important method for removing the deep NN's unimportant parameters and making their deployment easier on resource-constrained devices for practical applications. In this paper, we proposed a heuristics-based novel filter pruning method to automatically identify and prune the unimportant filters and make the inference process faster on devices with limited resource availability. …


A Convolutional Neural Network (Cnn) For Defect Detection Of Additively Manufactured Parts, Musarrat Farzana Rahman Jan 2022

A Convolutional Neural Network (Cnn) For Defect Detection Of Additively Manufactured Parts, Musarrat Farzana Rahman

Masters Theses

“Additive manufacturing (AM) is a layer-by-layer deposition process to fabricate parts with complex geometries. The formation of defects within AM components is a major concern for critical structural and cyclic loading applications. Understanding the mechanisms of defect formation and identifying the defects play an important role in improving the product lifecycle. The convolutional neural network (CNN) has been demonstrated to be an effective deep learning tool for automated detection of defects for both conventional and AM processes. A network with optimized parameters including proper data processing and sampling can improve the performance of the architecture. In this study, for the …


Enhanced Deep Learning Approach Based On The Deep Convolutional Encoder-Decoder Architecture For Electromagnetic Inverse Scattering Problems, He Ming Yao, Lijun Jiang, Wei E.I. Sha Jul 2020

Enhanced Deep Learning Approach Based On The Deep Convolutional Encoder-Decoder Architecture For Electromagnetic Inverse Scattering Problems, He Ming Yao, Lijun Jiang, Wei E.I. Sha

Electrical and Computer Engineering Faculty Research & Creative Works

This letter proposes a novel deep learning (DL) approach to resolve the electromagnetic inverse scattering (EMIS) problems. The conventional approaches of resolving EMIS problems encounter assorted difficulties, such as high contrast, high computational cost, inevitable intrinsic nonlinearity, and strong ill-posedness. To surmount these difficulties, a novel DL approach is proposed based on a novel complex-valued deep fully convolutional neural network structure. The proposed complex-valued deep learning model for solving EMIS problems composes of an encoder network and its corresponding decoder network, followed by a final pixel-wise regression layer. The complex-valued encoder network extracts feature fragments from received scattered field data, …


Two-Step Enhanced Deep Learning Approach For Electromagnetic Inverse Scattering Problems, He Ming Yao, Wei E.I. Sha, Lijun Jiang Nov 2019

Two-Step Enhanced Deep Learning Approach For Electromagnetic Inverse Scattering Problems, He Ming Yao, Wei E.I. Sha, Lijun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

In this letter, a new deep learning (DL) approach is proposed to solve the electromagnetic inverse scattering (EMIS) problems. The conventional methods for solving inverse problems face various challenges including strong ill-conditions, high contrast, expensive computation cost, and unavoidable intrinsic nonlinearity. To overcome these issues, we propose a new two-step machine learning based approach. In the first step, a complex-valued deep convolutional neural network is employed to retrieve initial contrasts (permittivity's) of dielectric scatterers from measured scattering data. In the second step, the previously obtained contrasts are input into a complex-valued deep residual convolutional neural network to refine the reconstruction …


Source Reconstruction Method Based On Machine Learning Algorithms, He Ming Yao, Lijun Jiang, Wei E.I. Sha Jun 2019

Source Reconstruction Method Based On Machine Learning Algorithms, He Ming Yao, Lijun Jiang, Wei E.I. Sha

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a new source reconstruction method (SRM) based on deep learning. The conventional SRM usually requires oversampled measurements data to ensure higher accuracy. Thus, conventional SRM numerical system is usually highly singular. A deep convolutional neural network (ConvNet) is proposed to reconstruct the equivalent sources of the target to overcome difficulty. The deep ConvNet allows us to employ less data samples. Besides, the ill-conditioned numerical system can be effectively avoided. Numerical examples are presented to demonstrate the feasibility and accuracy of the proposed method. Its performance is also compared with the traditional neural network and interpolation method. Moreover, …


Vision Sensor Based Action Recognition For Improving Efficiency And Quality Under The Environment Of Industry 4.0, Zipeng Wang, Ruwen Qin, Jihong Yan, Chaozhong Guo May 2019

Vision Sensor Based Action Recognition For Improving Efficiency And Quality Under The Environment Of Industry 4.0, Zipeng Wang, Ruwen Qin, Jihong Yan, Chaozhong Guo

Engineering Management and Systems Engineering Faculty Research & Creative Works

In the environment of industry 4.0, human beings are still an important influencing factor of efficiency and quality which are the core of product life cycle management. Hence, monitoring and analyzing humans' actions are essential. This paper proposes a vision sensor based method to evaluate the accuracy of operators' actions. Each action of operators is recognized in real time by a Convolutional Neural Network (CNN) based classification model in which hierarchical clustering is introduced to minimize the effects of action uncertainty. Warnings are triggered when incorrect actions occur in real time and applications of action analysis of workers on a …


Applying Deep Learning Approach To The Far-Field Subwavelength Imaging Based On Near-Field Resonant Metalens At Microwave Frequencies, He Ming Yao, Min Li, Lijun Jiang Jan 2019

Applying Deep Learning Approach To The Far-Field Subwavelength Imaging Based On Near-Field Resonant Metalens At Microwave Frequencies, He Ming Yao, Min Li, Lijun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we utilize the deep learning approach for the subwavelength imaging in far-field, which is realized by the near-field resonant metalens at microwave frequencies. The resonating metalens consisting of split-ring resonators (SRRs) are equipped with the strong magnetic coupling ability and can convert evanescent waves into propagating waves using the localized resonant modes. The propagating waves in the far-field are utilized as the input of a trained deep convolutional neural network (CNN) to realize the imaging. The training data for establishing the deep CNN are obtained by the EM simulation tool. Besides, the white Gaussian noise is added …


Deep Learning Nuclei Detection In Digitized Histology Images By Superpixels, Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Haidar Almubarak, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier Mar 2018

Deep Learning Nuclei Detection In Digitized Histology Images By Superpixels, Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Haidar Almubarak, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades.

Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network.

Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with …


Dragline Excavation Simulation, Real-Time Terrain Recognition And Object Detection, Godfred Somua-Gyimah Jan 2018

Dragline Excavation Simulation, Real-Time Terrain Recognition And Object Detection, Godfred Somua-Gyimah

Doctoral Dissertations

"The contribution of coal to global energy is expected to remain above 30% through 2030. Draglines are the preferred excavation equipment in most surface coal mines. Recently, studies toward dragline excavation efficiency have focused on two specific areas. The first area is dragline bucket studies, where the goal is to develop new designs which perform better than conventional buckets. Drawbacks in the current approach include operator inconsistencies and the inability to physically test every proposed design. Previous simulation models used Distinct Element Methods (DEM) but they over-predict excavation forces by 300% to 500%. In this study, a DEM-based simulation model …


Convolutional Neural Network Based Localized Classification Of Uterine Cervical Cancer Digital Histology Images, Haidar A. Almubarak, R. Joe Stanley, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier Oct 2017

Convolutional Neural Network Based Localized Classification Of Uterine Cervical Cancer Digital Histology Images, Haidar A. Almubarak, R. Joe Stanley, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier

Electrical and Computer Engineering Faculty Research & Creative Works

In previous research, we introduced an automated localized, fusion-based algorithm to classify squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN). The approach partitioned the epithelium into 10 segments. Image processing and machine vision algorithms were used to extract features from each segment. The features were then used to classify the segment and the result was fused to classify the whole epithelium. This research extends the previous research by dividing each of the 10 segments into 3 parts and uses a convolutional neural network to classify the 3 parts. The result is then fused to …


Entity Resolution Using Convolutional Neural Network, Ram Deepak Gottapu, Cihan H. Dagli, Bharami Ali Nov 2016

Entity Resolution Using Convolutional Neural Network, Ram Deepak Gottapu, Cihan H. Dagli, Bharami Ali

Engineering Management and Systems Engineering Faculty Research & Creative Works

Entity resolution is an important application in field of data cleaning. Standard approaches like deterministic methods and probabilistic methods are generally used for this purpose. Many new approaches using single layer perceptron, crowdsourcing etc. are developed to improve the efficiency and also to reduce the time of entity resolution. The approaches used for this purpose also depend on the type of dataset, labeled or unlabeled. This paper presents a new method for labeled data which uses single layered convolutional neural network to perform entity resolution. It also describes how crowdsourcing can be used with the output of the convolutional neural …