Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath Mar 2024

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar Feb 2024

Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) is an alternative to Portland cement, valued for its superior early strength and thermal resistance. Partially replacing CAC with Fly ash (FA) can reduce carbon footprint and production costs of CAC, producing sustainable cementitious binders. This research investigates on various properties (i.e., hydration kinetics; phase assemblage evolution; compressive strength) of [CAC + FA] binders. Using 13 distinct FAs, up to 50% of CAC was substituted. The study measures hydration kinetics, compressive strength, and employs the number of constraints to estimate FA reactivity. Advanced quantitative analysis draws links between hydration kinetics and compressive strength and elucidate the …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …


Synergistic Effect Of Hedp.4na And Different Induced Pouring Angles On Mechanical Properties Of Fiber-Reinforced Alkali-Activated Slag Composites, Jingjie Wei, Jianwei Liu, Kamal Khayat, Wu Jian Long Mar 2023

Synergistic Effect Of Hedp.4na And Different Induced Pouring Angles On Mechanical Properties Of Fiber-Reinforced Alkali-Activated Slag Composites, Jingjie Wei, Jianwei Liu, Kamal Khayat, Wu Jian Long

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The Poor Flexural and Damping Properties of Building Materials Damages Concrete Structures and Affects their Service Life When Concrete Structures Are Subjected to Dynamic Loads. Three Different Dosages (I.e., 0%, 0.3%, and 0.6%) of Organic Phosphonates (HEDP.4Na) and Different Pouring Methods (I.e., Conventional Pouring Method, 90°-Induced Pouring Method, and 150°-Induced Pouring Method) Were Designed to Improve the Flexural and Damping Performance of Fiber-Reinforced Alkali-Activated Slag Composites (FR-AASC). the Enhanced Mechanism of HEDP.4Na Was Revealed by Phase Analysis (X-Ray Diffraction, XRD), Pore Structure Analysis (Mercury Intrusion Porosimetry, MIP), the Heat of Hydration, and Scanning Electron Microscopy (SEM) Analysis. the Results Showed …


Optimization Of Mixture Parameter For Physical And Mechanical Properties Of Reactive Powder Concrete Under External Sulfate Attack Using Taguchi Method, Umut Bakhbergen, Chang Seon Shon, Dichuan Zhang, Jong Ryeol Kim, Jenny Liu Oct 2022

Optimization Of Mixture Parameter For Physical And Mechanical Properties Of Reactive Powder Concrete Under External Sulfate Attack Using Taguchi Method, Umut Bakhbergen, Chang Seon Shon, Dichuan Zhang, Jong Ryeol Kim, Jenny Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Reactive powder concrete (RPC) is defined as a cementitious composite material with an optimized size of granular constituents, very low water-to-binder ratio (w/b), pozzolanic materials like silica fume (SF), and discontinuous fiber reinforcement. RPC applications include bridge decks and girders, seismic columns, wind turbine towers, and pile foundations. Especially, a durable and robust RPC pile foundation with long service life is essential in building construction because continuous maintenance is impossible. Moreover, natural in-situ conditions such as water table, temperature, and sulfate concentration in soil to which the pile foundation is exposed are critical and related to deteriorating the pile foundation. …


A Novel Iron Phosphate Cement Derived From Copper Smelting Slag And Its Early Age Hydration Mechanism, Yunlong Luo, Xintao Zhou, Zhongqiu Luo, Hongyan Ma, Yu Wei, Qin Liu Oct 2022

A Novel Iron Phosphate Cement Derived From Copper Smelting Slag And Its Early Age Hydration Mechanism, Yunlong Luo, Xintao Zhou, Zhongqiu Luo, Hongyan Ma, Yu Wei, Qin Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Copper slag (CS), a by-product of copper smelting, is normally stockpiled, leading to wastes of resource and space as well as environment pollution. It has not been massively reutilized as a supplementary cementitious material in Portland cement due to its low reactivity. In the present study, CS is for the first time utilized as the base component to prepare an iron phosphate cement (IPC) by reacting with ammonium dihydrogen phosphate (ADP) at room temperature. The influence of the raw materials mass ratio (CS/ADP) on the microstructure and performance of IPC pastes are investigated. It is found that the compressive strength …


Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jun 2022

Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated system is an environment-friendly, sustainable construction material utilized to replace ordinary Portland cement (OPC) that contributes to 9% of the global carbon footprint. Moreover, the alkali-activated system has exhibited superior strength at early ages and better corrosion resistance compared to OPC. The current state of analytical and machine learning models cannot produce highly reliable predictions of the compressive strength of alkali-activated systems made from different types of aluminosilicate-rich precursors owing to substantive variation in the chemical compositions and reactivity of these precursors. In this study, a random forest model with two constraints (i.e., topological network and thermodynamic constraints) is …


Machine Learning Enabled Closed-Form Models To Predict Strength Of Alkali-Activated Systems, Taihao Han, Eslam Gomaa, Ahmed Gheni, Jie Huang, Mohamed Elgawady, Aditya Kumar Jun 2022

Machine Learning Enabled Closed-Form Models To Predict Strength Of Alkali-Activated Systems, Taihao Han, Eslam Gomaa, Ahmed Gheni, Jie Huang, Mohamed Elgawady, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated mortar (AAM) is an emerging eco-friendly construction material, which can complement ordinary Portland cement (OPC) mortars. Prediction of properties of AAMs—albeit much needed to complement experiments—is difficult, owing to substantive batch-to-batch variations in physicochemical properties of their precursors (i.e., aluminosilicate and activator solution). In this study, a machine learning (ML) model is employed; and it is shown that the model—once trained and optimized—can reliably predict compressive strength of AAMs solely from their initial physicochemical attributes. Prediction performance of the model improves when multiple compositional descriptors of the aluminosilicate are combined into a singular, composite chemostructural descriptor (i.e., network ratio …


Mechanical Properties Of Hydrogenated Amorphous Silicon (A-Si:H) Particles, Taizhi Jiang, Fardin Khabaz, Aniket Marne, Chenglin Wu, Raluca Gearba, Revanth Bodepudi, Roger T. Bonnecaze, Kenneth M. Liechti, Brian A. Korgel Nov 2019

Mechanical Properties Of Hydrogenated Amorphous Silicon (A-Si:H) Particles, Taizhi Jiang, Fardin Khabaz, Aniket Marne, Chenglin Wu, Raluca Gearba, Revanth Bodepudi, Roger T. Bonnecaze, Kenneth M. Liechti, Brian A. Korgel

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

A nanoindenter was used to compress individual particles of hydrogenated amorphous silicon (a-Si:H) ranging in diameter from 290 nm to 780 nm. The colloidal synthesis used to produce the particles enables the hydrogen content to be manipulated over a wide range, from about 5 at. % to 50 at. %, making these a-Si:H particles promising for applications in lithium ion batteries, hydrogen storage, and optical metamaterials. Force-displacement curves generated using a tungsten probe flattened with focused ion beam exhibited elastic and then plastic deformations, followed by fracture and crushing of the particles. For particles with 5% and 50% H, Young's …


A High-Entropy Alloy With Hierarchical Nanoprecipitates And Ultrahigh Strength, Zhiqiang Fu, Lin Jiang, Haiming Wen, For Full List Of Authors, See Publisher's Website. Oct 2018

A High-Entropy Alloy With Hierarchical Nanoprecipitates And Ultrahigh Strength, Zhiqiang Fu, Lin Jiang, Haiming Wen, For Full List Of Authors, See Publisher's Website.

Materials Science and Engineering Faculty Research & Creative Works

High-entropy alloys (HEAs) are a class of metallic materials that have revolutionized alloy design. They are known for their high compressive strengths, often greater than 1 GPa; however, the tensile strengths of most reported HEAs are limited. Here, we report a strategy for the design and fabrication of HEAs that can achieve ultrahigh tensile strengths. The proposed strategy involves the introduction of a high density of hierarchical intragranular nanoprecipitates. To establish the validity of this strategy, we designed and fabricated a bulk Fe25Co25Ni25Al10Ti115 HEA to consist of a principal face-centered cubic …


Dynamic And Static Behavior Of Hollow-Core Frp-Concrete-Steel And Reinforced Concrete Bridge Columns Under Vehicle Collision, Omar I. Abdelkarim, Mohamed Elgawady Dec 2016

Dynamic And Static Behavior Of Hollow-Core Frp-Concrete-Steel And Reinforced Concrete Bridge Columns Under Vehicle Collision, Omar I. Abdelkarim, Mohamed Elgawady

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS) columns and conventional reinforced concrete (RC) columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses …


Evaluation Of Carbonation Resistance Of Paint Coated Concrete For Buildings, Tommy Y. Lo, Wenyu Liao, C. K. Wong, Waiching Tang Mar 2016

Evaluation Of Carbonation Resistance Of Paint Coated Concrete For Buildings, Tommy Y. Lo, Wenyu Liao, C. K. Wong, Waiching Tang

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

When evaluating the carbonation resistance of paint coated concrete, the effects of both the strength grade and the curing conditions (standard curing and accelerated curing) of concrete substrate on carbonation resistance of paint coated concrete were investigated. The concept of the carbonation suppression ratio of paint was presented for evaluation of the anti-carbonation performance of the two types of paints (exterior and interior paints) when applied to a reference concrete substrate. The test results showed a good linear relationship between the carbonation depths of the paint coated concrete and the square root of exposure times. Concrete with higher strength grade …


Factorial Design Approach In Proportioning Prestressed Self-Compacting Concrete, Wu-Jian Long, Kamal Khayat, Guillaume Lemieux, Feng Xing, Wei-Lun Wang Mar 2015

Factorial Design Approach In Proportioning Prestressed Self-Compacting Concrete, Wu-Jian Long, Kamal Khayat, Guillaume Lemieux, Feng Xing, Wei-Lun Wang

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures …


Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte Aug 2013

Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13-93B3) using the selective laser sintering (SLS) process. The pore size of the scaffolds varied from 400 to 1300 μm. The compressive strength of the scaffolds varied from 1.7 to 15.5 MPa …


Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2011

Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Particle size, binder content and the post-processing schedule are important parameters that affect the microstructure, and, hence, the mechanical properties of parts produced using the indirect selective laser sintering process. 13-93 bioactive glass, with mean particle sizes ranging from 10 μm to 44 μm, is mixed with different amounts of stearic acid binder to fabricate green scaffolds. Through the design of the post-processing schedule, the time required for postprocessing the green scaffolds is reduced from the initial 80 hrs to 12 hrs. The compressive strength varies from 41 MPa for a part with~60% porosity to 157 MPa for a part …


Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2010

Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bioactive glasses are more promising than biopolymers in fabricating scaffolds for bone tissue repair because they convert to hydroxyapatite, when implanted in vivo. Both direct and indirect selective laser sintering (SLS) methods of 13-93 bioactive glass were considered in this research to study the feasibility of fabricating scaffolds for bone repair applications. Stearic acid was used as the binder in the indirect method to fabricate the scaffolds. The green scaffolds underwent binder burnout and sintering at various soaking conditions between 675⁰C and 700⁰C, achieving a maximum compressive strength of 23.6 MPa, which is higher than that of the human cancellous …