Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

2022

Photovoltaic

Articles 1 - 2 of 2

Full-Text Articles in Engineering

An Interleaved High Step-Up Dc-Dc Converter Based On Integration Of Coupled Inductor And Built-In-Transformer With Switched-Capacitor Cells For Renewable Energy Applications, Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, Pourya Shamsi Jan 2022

An Interleaved High Step-Up Dc-Dc Converter Based On Integration Of Coupled Inductor And Built-In-Transformer With Switched-Capacitor Cells For Renewable Energy Applications, Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, Pourya Shamsi

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an interleaved high step-up DC-DC converter with the coupled inductor (CI) and built-in transformer (BIT) for renewable energy applications. Two double-winding (2W) CIs and one triple-winding (3W) BIT are integrated with the switched-capacitor (SC) voltage multiplier cells (VMCs) to achieve high-voltage gains without extreme duty cycles. The CIs and BIT turns-ratios provide two other degrees of freedom -- in addition to the duty cycle -- to adjust the voltage gain that leads to increased design flexibility. The diodes turn off naturally under the zero-current switching (ZCS) conditions because their current falling rates are controlled by the leakage …


An Interleaved High Step-Up Dc-Dc Converter With Coupled Inductor And Built-In Transformer For Renewable Energy Applications, Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, Pourya Shamsi Jan 2022

An Interleaved High Step-Up Dc-Dc Converter With Coupled Inductor And Built-In Transformer For Renewable Energy Applications, Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, Pourya Shamsi

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces an interleaved high step-up DC-DC converter with high voltage gain, low voltage stresses on the switches, low current stresses on the components, and continuous input current with low ripple, all of which are beneficial for the renewable energy (RE) applications. The proposed converter is based on the integration of three voltage-boosting (VB) methods: coupled inductor (CI), built-in transformer (BIT), and switched-capacitor (SC) cells. The energies of the leakage inductances of the CIs and BIT are absorbed and recirculated to the output side, which further extends the voltage gain. In addition, the current-falling rates of the diodes are …