Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

2021

Battery Modeling

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Physical-Based Training Data Collection Approach For Data-Driven Lithium-Ion Battery State-Of-Charge Prediction, Jie Li, Will Ziehm, Jonathan W. Kimball, Robert Landers, Jonghyun Park Sep 2021

Physical-Based Training Data Collection Approach For Data-Driven Lithium-Ion Battery State-Of-Charge Prediction, Jie Li, Will Ziehm, Jonathan W. Kimball, Robert Landers, Jonghyun Park

Electrical and Computer Engineering Faculty Research & Creative Works

Data-Driven approaches for State of Charge (SOC) prediction have been developed considerably in recent years. However, determining the appropriate training dataset is still a challenge for model development and validation due to the considerably varieties of lithium-ion batteries in terms of material, types of battery cells, and operation conditions. This work focuses on optimization of the training data set by using simple measurable data sets, which is important for the accuracy of predictions, reduction of training time, and application to online estimation. It is found that a randomly generated data set can be effectively used for the training data set, …


Physics-Based Modeling Of Lithium-Ion Batteries For Control And Estimation Applications, Brody J. C. Riemann Jan 2021

Physics-Based Modeling Of Lithium-Ion Batteries For Control And Estimation Applications, Brody J. C. Riemann

Masters Theses

“Lithium-ion batteries are extensively used in many application areas like consumer electronics, electric vehicles, and microgrids. As the world moves towards further electrification of vehicles and more widespread use of renewable energy sources, the need for large-scale battery storage systems will grow. To effectively replace conventional methods, batteries will need to be charged quickly while accounting for degradation to maximize lifetime. Further, larger batteries require more detailed safety monitoring, which is implemented using a battery management system (BMS). A BMS is responsible for state of charge (SOC) estimation, state of health (SOH) estimation, cell balancing, regulating voltage and current according …