Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Bioactivity/Cytotoxicity Of Micro-/Nano-Materials And Novel Development Of Fiber-Optic Probes For Single Cell Monitoring, Qingbo Yang Jan 2016

Bioactivity/Cytotoxicity Of Micro-/Nano-Materials And Novel Development Of Fiber-Optic Probes For Single Cell Monitoring, Qingbo Yang

Doctoral Dissertations

"Manufactured nano-/micro-materials (MNMs) have been widely used and their interactions with niche biological environment are highly concerned for both of their biohazardous and bioactive effects, whereas no available comprehensive evaluations or regulations have been provided yet. This dissertation thus focuses on three major aspects: 1) fundamental toxicity understandings of a typical MNMs (zinc oxide nanoparticles), 2) bioactivity evaluations of representative bioactive MNMs, and 3) development of novel micro-probes for high spatial resolution monitoring. Firstly, the NP's concentration, irradiation, hydrodynamic size, and the localized pH, ionic strength, NP zeta-potential as well as dissolved oxygen levels were found correlated with the production …


Detecting, Segmenting And Tracking Bio-Medical Objects, Mingzhong Li Jan 2016

Detecting, Segmenting And Tracking Bio-Medical Objects, Mingzhong Li

Doctoral Dissertations

"Studying the behavior patterns of biomedical objects helps scientists understand the underlying mechanisms. With computer vision techniques, automated monitoring can be implemented for efficient and effective analysis in biomedical studies. Promising applications have been carried out in various research topics, including insect group monitoring, malignant cell detection and segmentation, human organ segmentation and nano-particle tracking.

In general, applications of computer vision techniques in monitoring biomedical objects include the following stages: detection, segmentation and tracking. Challenges in each stage will potentially lead to unsatisfactory results of automated monitoring. These challenges include different foreground-background contrast, fast motion blur, clutter, object overlap and …