Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat Jan 2022

Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat

Doctoral Dissertations

“The electron-phonon interaction is an important interaction in many solids as it influences transport phenomena and related quantities such as the electrical and thermal conductivities, especially in nuclear and space applications. The importance of the electron-phonon interaction in primary damage production in 3C-SiC is the subject of this research.

The electron-phonon coupling factor was calculated using a hybrid Density Functional Perturbation Theory - Classical Electron Gas model. The coupling factor was calculated as a function of electron temperature in pristine and defective 3C-SiC, and relaxed defective cells. The electron-phonon coupling is found to depend strongly on the electronic temperature and …