Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Mechanical Engineering

Additive Manufacturing

Theses/Dissertations

2021

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Development Of In-Situ Radiometric Inspection Methods For Quality Assurance In Laser Powder Bed Fusion, Cody S. Lough Jan 2021

Development Of In-Situ Radiometric Inspection Methods For Quality Assurance In Laser Powder Bed Fusion, Cody S. Lough

Doctoral Dissertations

“Laser Powder Bed Fusion (LPBF) metal Additive Manufacturing (AM) fabricates 3D metal parts layer-by-layer. The process enables production of geometrically complex parts that are difficult to inspect with traditional methods. The LPBF parts experience significant geometry driven thermal variations during manufacturing. This creates microstructure and mechanical property inhomogeneities and can stochastically cause defects. Mission critical applications require part qualification by measuring the defects non-destructively. The layer-to-layer nature of LPBF permits non-intrusive measurement of radiometric signals for a part’s entire volume. These measurements provide thermal features that correlate with the local part health. This research establishes Optical Emission Spectroscopy (OES) and …


Sources Of Quality Uncertainty In Laser Powder Bed Fusion Metal Additive Manufacturing, Zachary Young Jan 2021

Sources Of Quality Uncertainty In Laser Powder Bed Fusion Metal Additive Manufacturing, Zachary Young

Doctoral Dissertations

"Powder based additive manufacturing (AM) exhibits tremendous uncertainties, where variations in build quality is present despite utilizing similar build processing parameters. First, this work reports the features and formation mechanisms of five unique types of spatter during the LPBF process by in-situ high-speed, high-energy x-ray imaging. The unique physical characteristics of spatter are determined. The effect of laser scan speed and laser power on spatter formation, ejection, and mitigation are determined. Second, this work addresses the uncertainty challenge by identifying the sources of uncertainty in SLM by in-situ characterization due to variations from the additive manufacturing processing parameters needed for …


Numerical And Experimental Study Of Mechanical Properties For Laser Metal Deposition (Lmd) Process Part, Lan Li Jan 2021

Numerical And Experimental Study Of Mechanical Properties For Laser Metal Deposition (Lmd) Process Part, Lan Li

Doctoral Dissertations

"Laser Metal Deposition (LMD), also called as, Laser Engineered Net Shaping (LENS), Directed Energy Deposition (DED), is a typical Additive Manufacturing (AM) technology, is used for advanced free-form fabrication. It creates parts by directly melting materials and depositing them on the workpiece layer by layer. In this process, the metal powder or fiber is melted within the melting pool by laser beam or electron beam and quickly solidifies to the deposited layer. LMD technology shows great advantages over traditional manufacturing on complex structure fabrication, including high building rates, easy material replacement and reduced material waste. These merits make the wide …