Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Motion Analysis Of The Upper Extremities During Lofstrand Crutch-Assisted Gait In Children With Orthopaedic Disabilities, Brooke A. Slavens, Neha Bhagchandani, Mei Wang, Peter A. Smith, Gerald F. Harris Oct 2011

Motion Analysis Of The Upper Extremities During Lofstrand Crutch-Assisted Gait In Children With Orthopaedic Disabilities, Brooke A. Slavens, Neha Bhagchandani, Mei Wang, Peter A. Smith, Gerald F. Harris

Biomedical Engineering Faculty Research and Publications

Background

This paper presents a review of current state-of-the-art dynamic systems for quantifying the kinematics and kinetics of the joints of the upper extremities during Lofstrand crutch-assisted gait. The reviewed systems focus on the rehabilitation of children and adults with myelomeningocele (MM), cerebral palsy (CP), spinal cord injury (SCI), and osteogenesis imperfecta (OI). Forearm crutch systems have evolved from models with single- to multi-sensor hardware systems that can incorporate an increasing number of segments that are in compliance with the standards of the International Society of Biomechanics (ISB).

Methods

The initial system developed by our group was a single, six-axis, …


Development Of An Experimental Model To Quantify Lumbar Spine Kinematics During Military Seat Ejection, Steven George Storvik Jul 2011

Development Of An Experimental Model To Quantify Lumbar Spine Kinematics During Military Seat Ejection, Steven George Storvik

Master's Theses (2009 -)

The initial phase of a military ejection sequence exerts substantial axial loads on the spinal column. Eccentric inertial loading on the thoracolumbar spine can lead to injury. Most serious injuries due to ejection are in the form of a vertebral fracture, most commonly occurring at the thoracolumbar junction. The objective of the current study was to understand characteristics of a military seat ejection by employing an experimental model designed to simulate the boost or in-rail phase. The model incorporates realistic boundary conditions and is capable of quantifying metrics associated with injury tolerance such as applied accelerations and resultant loads and …