Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Improving Paper-Based Microfluidic Mixing With The Incorporation Of Flow Disrupting Structures, Hannah C. Green Oct 2019

Improving Paper-Based Microfluidic Mixing With The Incorporation Of Flow Disrupting Structures, Hannah C. Green

Master's Theses

Paper-based microfluidic devices provide a light-weight, cost effective platform for diagnostic and analytical testing. The goal of this project is to enhance paper-based microfluidic mixing by incorporating fluid flow disrupting structures (referred to here as rib bones) into the microdevice design to expand the analytical capabilities of paperbased microfluidic devices. The devices are fabricated on Whatman CHR-1 chromatography paper. The devices are designed in SolidWorks and printed using a solid ink printer (ColorQube 8580). The wax is penetrated into the paper to create hydrophobic barrier regions by heating in a convection oven until the wax is fully penetrated. The parameters …


From Experimental Studies To Coarse-Grained Modeling: Characterization Of Surface Area To Volume Ratio Effects On The Swelling Of Poly (Ethylene Glycol) Dimethacrylate Hydrogels, Gabriel Zahm Oct 2019

From Experimental Studies To Coarse-Grained Modeling: Characterization Of Surface Area To Volume Ratio Effects On The Swelling Of Poly (Ethylene Glycol) Dimethacrylate Hydrogels, Gabriel Zahm

Master's Theses

Understanding the performance of widely applied nanoscale hydrogel biomaterials is an unmet need within the biomedical field. The objective of this master’s thesis project was to evaluate the effects size and surface area has on the in vivo behavior of nanoscale hydrogels. The hypothesis tested was that at the nanoscale, the increased surface area to volume effects of nanoscale hydrogels play and important role in the overall swelling of hydrogels, such that nanoscale hydrogels swell to a greater degree than their bulk counterparts. To investigate this, the bulk swelling behavior of a series of neutral poly (ethylene glycol) di-methacrylate (PEGDMA) …


Design And Analysis Of A Traveling Wave Fault Locator, Gerald Austin Taylor Aug 2019

Design And Analysis Of A Traveling Wave Fault Locator, Gerald Austin Taylor

Master's Theses

The accuracy of fault location is an integral part of power system operations. Improved fault location can reduce maintenance time, increase efficiency, and save money. When a fault occurs, it sends a disturbance in the current and voltage in each direction at almost the speed of light. This disturbance is called a traveling wave, and can be used to locate faults. In efforts to increase accuracy, the use of traveling wave theory to locate faults has become more popular.

This thesis goes through the process of designing and testing a traveling wave fault locator. The design includes analog and digital …


Metal Related Nanoparticles' Physical Behaviors In Different Physiologica Environments, Muhetaer Tuerhong Aug 2019

Metal Related Nanoparticles' Physical Behaviors In Different Physiologica Environments, Muhetaer Tuerhong

Master's Theses

In the past decades, the development of nanotechnology has had tremendous successes in material science. In this technology, the pertinent materials are used at the intermediate scale between individual molecules and their size in the nanometer region(1-100nm) compared to bulk materials. This nanoscale size provides a larger surface area; therefore, nanoparticles would be perfect essential components of nanotechnology. The reduced size of nanoparticles has a larger surface ratio to volume, which can modify their chemical, mechanical, structural, and electrical properties.

In this study, the main goal is to test different metal related nanoparticles, such as CuNPs (Copper nanoparticles), FeNPs (Iron …


A Study Of The Mono-Stable And Bi-Stable Magnetic Spring Based Vibration Energy Harvesters Subject To Harmonic Excitation, Hieu Tri Nguyen Aug 2019

A Study Of The Mono-Stable And Bi-Stable Magnetic Spring Based Vibration Energy Harvesters Subject To Harmonic Excitation, Hieu Tri Nguyen

Master's Theses

Continuous improvement in electronics manufacturing has led to the deployment of low-power sensors, which has resulted in an urgent need for developing energy harvesters capable of generating electric power using abundant and free energy sources such as ambient vibrations. The work presented here is motivated by the growing interest in targeting nonlinear energy harvesting through magnetic interactions, which are compatible with ambient vibration energy sources that are often characterized by a broadband frequency spectrum and can be particularly rich with low frequencies. In this work, experimental and theoretical studies were performed to investigate a magnetic- levitation-based vibration energy harvester that …


Spring-Guided Electromagnetic Vibrations Energy Harvester, Ghufran Jaber Aldawood Aug 2019

Spring-Guided Electromagnetic Vibrations Energy Harvester, Ghufran Jaber Aldawood

Master's Theses

In recent years, vibration based energy harvesting techniques showed a promising alternative to power wireless sensor networks (WSN). Billions of low power sensors are currently used widely in wireless sensor networks (WSN) and the Internet of Things environment (IoT). These sensors are currently powered by a traditional power source, i.e. a disposable battery. Vibrations are an abundant source of kinetic energy that can serve as the power source for these sensor nodes. This approach eliminates the necessity for frequent battery replacement due to their short-life span and hazardous disposal process. The adverse and irreversible effect from the disposal of these …


Investigating The Rapid Curing Possibility Of Geopolymer Concrete, Ashlesh Banjara May 2019

Investigating The Rapid Curing Possibility Of Geopolymer Concrete, Ashlesh Banjara

Master's Theses

Recent studies of heat-cured fly ash based green geopolymer concrete have shown its suitability for fabrication of structural members. Fabrication of these structural members requires continuous moderate heating (145°F) for 24 hrs, and an oven essential, for a large member can quickly turn into an energy guzzler, potentially eliminating the green credentials of the product. The proposed research involves the development of a frontal polymerization (FP) method that achieves rapid curing of geopolymer at ambient condition after short-term heat application. Initial work shows thermal FP in geopolymer is a possibility and might be a solution to the problem. The process …


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in …


Effects On Strength And Corrosive Characteristics Of Hardened Cement Paste Using Rice Husk And Sugarcane Bagasse, Travis D. Garrett May 2019

Effects On Strength And Corrosive Characteristics Of Hardened Cement Paste Using Rice Husk And Sugarcane Bagasse, Travis D. Garrett

Master's Theses

Cement is one of the most used building materials in the world. The production of ordinary Portland cement contributes to the release of harmful greenhouse gasses. In an effort to reduce these emissions, different materials are being evaluated for their use as partial replacements for ordinary Portland cement. Rice husk and sugarcane bagasse are agricultural waste products and large amounts of these are currently landfilled, making them inexpensive and available. When combusted at high temperatures they form rice husk ash and sugarcane bagasse ash that have pozzolanic characteristics. The high silicon dioxide in these products makes them good options to …