Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Engineering Dopant Position In Structure-Controlled Ceo2-Zro2 Catalysts, Behnam Safavinia May 2020

Engineering Dopant Position In Structure-Controlled Ceo2-Zro2 Catalysts, Behnam Safavinia

LSU Master's Theses

CeO2-ZrO2 (CZO) nanoparticles (NPs) have application in many catalytic reactions, such as methane reformation, due to their oxygen cycling ability. Ni doping has been shown to improve the catalytic activity and acts as an active site for the decomposition of methane. In this work, Ni:CZO NPs were synthesized via a two-step co-precipitation/molten salt synthesis to compare Ni distribution, oxygen vacancy concentration, and catalytic activity relative to a reference state-of-the-art catalyst. To better understand the effects of Ni position and dispersion, and oxygen vacancy formation in these materials, the Ni concentration, reaction time, and deposition methods were varied. …


Theoretical Investigation Of Fundamental Cathode Processes In Metal-02 Batteries, Saurin Hiren Rawal Apr 2020

Theoretical Investigation Of Fundamental Cathode Processes In Metal-02 Batteries, Saurin Hiren Rawal

LSU Doctoral Dissertations

In this thesis we theoretically explore the different fundamental phenomena associated with metal-air batteries (where the metal can be Li, Na or K) using first principles density functional theory. We start by investigating the adsorption of the starting reactants/primary intermediates i.e. metal superoxides and superoxide anion on Au(111) and Au(211). We elucidate the influence of electric fields and the importance of including explicit solvents on the adsorption energy of these intermediates. We show that these effects are considerable and should be included for future reaction modeling of these batteries. Following this we investigate the reaction of M+ and O …


Transition Metal-Doped Rare-Earth Oxysulfide Catalysts For High Temperature Dry Reforming Of Methane, Changyi Jiang Mar 2020

Transition Metal-Doped Rare-Earth Oxysulfide Catalysts For High Temperature Dry Reforming Of Methane, Changyi Jiang

LSU Doctoral Dissertations

Carbon dioxide reforming of methane is a catalytic reaction utilizing two kinds of greenhouse gases and converting them into a useful industrial gas stream, “syngas”. However, sulfur poisoning and coke formation are two major challenges for this reaction. In this study, we have synthesized and examined several Ce-La and Ce-Zr oxides, with different transition metal additives. A rapid screening technique was developed to measure reforming and coking rates at low partial pressures. It is a good indicator of catalyst behavior at higher conversions and partial pressures. Following the rapid screening, select catalysts were examined at longer times on stream. Those …


First-Principle Study On The Interaction Of Ligands With Gold And Effects On Catalytic Activities, Xun Cheng Jan 2020

First-Principle Study On The Interaction Of Ligands With Gold And Effects On Catalytic Activities, Xun Cheng

LSU Doctoral Dissertations

The extensive use of fossil fuels has increased the atmospheric concentration of CO2, resulting in global climate change. One way to mitigate the CO2 challenge is to convert it into useful chemicals electrocatalytically using renewable energies. Recent studies suggest that ligand-modified gold electrodes can enhance the Faradaic efficiency (FE) and selectivity of the electrochemical CO2 reduction reaction (CO2RR). This theoretical research, primarily based on density functional theory (DFT), has been carried out to understand the interactions of ligands with Au and possible effects on electrocatalytic activities. We systematically modeled and studied the adsorption of …