Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Evaluation Of Sustainable And Environmentally Friendly Stabilization Of Cohesionless Sandy Soil For Transportation Infrastructure, Miladin Radovic, Anand Puppala, Surya Sarat Chandra Congress, Jungyeon Jang, Oscar Huang Aug 2021

Evaluation Of Sustainable And Environmentally Friendly Stabilization Of Cohesionless Sandy Soil For Transportation Infrastructure, Miladin Radovic, Anand Puppala, Surya Sarat Chandra Congress, Jungyeon Jang, Oscar Huang

Data

Ordinary Portland cement (OPC) is generally used to stabilize cohesionless sandy soils that are often found in coastal areas. Due to its high carbon footprint, many studies are being conducted to identify a suitable green alternative for stabilizing cohesionless soils. Previous studies have shown that partially replacing OPC with waste materials such as nano-silica and coal waste reduces the overall carbon footprint without significantly impacting the performance. Geopolymer (GP) received a lot of attention in the past few decades owing to its similar properties to that of OPC yet with a lower carbon footprint. This study investigated the feasibility of …


Evaluation Of Bagasse Ash As Cement And Sand Replacement For The Production Of Engineered Cementitious Composites (Ecc), Gabriel Arce, Marwa Hassan, Sujata Subedi, Ana Rivas, Samantha Hidalgo, Hugo Eguez Nov 2020

Evaluation Of Bagasse Ash As Cement And Sand Replacement For The Production Of Engineered Cementitious Composites (Ecc), Gabriel Arce, Marwa Hassan, Sujata Subedi, Ana Rivas, Samantha Hidalgo, Hugo Eguez

Data

The objective of this study was to develop novel Engineered Cementitious Composites (ECC) materials implementing sugarcane bagasse ash (SCBA). To this end, the effects on the mechanical and physical properties of ECC materials of: (1) Louisiana raw SCBA (RBA) as a partial and complete replacement of sand (i.e., class S mixtures); (2) Louisiana post-processed SCBA (PBA) as a partial replacement of cement (i.e., class C mixtures); and (3) Ecuador raw SCBA (EBA) as a partial and complete replacement of sand (i.e., class S-E mixtures) were studied. Sand replacement levels with RBA and EBA evaluated were 25, 50, 75, and 100% …


Eco-Friendly Stabilization Of Sulfate-Rich Expansive Soils Using Geopolymers For Transportation Infrastructure, Xinbao Yu, Anand Puppala, Miladin Radovic, Sayantan Chakraborty, Jungyeon Jang, Oscar Huang Oct 2020

Eco-Friendly Stabilization Of Sulfate-Rich Expansive Soils Using Geopolymers For Transportation Infrastructure, Xinbao Yu, Anand Puppala, Miladin Radovic, Sayantan Chakraborty, Jungyeon Jang, Oscar Huang

Data

Traditional calcium-based stabilizers, such as lime, to stabilize sulfate-rich expansive soils, are lasting-challenges in geotechnical engineering. The biggest problem with using calcium-based stabilizers is that when calcium and water are exposed to sulfate-rich expansive soils, they form ettringite as an expansive mineral, which causes sulfate-induced heaving. The study aimed to investigate the feasibility of stabilizing sulfate-rich expansive soils using geopolymers for transportation infrastructure. Literature review on sulfate-induced heaving and sulfate-rich soils stabilized with geopolymers suggests a direction for how to stabilize sulfate soils using geopolymers. The engineering tests were conducted to determine the swell, shrinkage, and strength behavior of natural, …


Development Of Geopolymer-Based Cement And Soil Stabilizers For Transportation Infrastructure, Miladin Radovic, Anand Puppala Sep 2019

Development Of Geopolymer-Based Cement And Soil Stabilizers For Transportation Infrastructure, Miladin Radovic, Anand Puppala

Data

Corresponding data set for Tran-SET Project No. 18CTAM03. Abstract of the final report is stated below for reference:

"Geopolymer Cement (GPC) has drawn much attention in the recent years as an alternative to Ordinary Portland Cement (OPC) for soil stabilization, pavements, bridges and other transportation structures due to their good mechanical properties in comparison to OPC. In addition, GPC can be processed at room temperatures from aqueous solutions of waste materials (e.g. fly ash) or abundant natural sources (e.g. clay), thereby significantly reducing CO2 production associated with processing of OPC. As such, GPC proves to be a more sustainable and …


Impacts Of Moisture On Asphalt Properties, Zahid Hossain Dec 2018

Impacts Of Moisture On Asphalt Properties, Zahid Hossain

Data

Corresponding data set for Tran-SET Project No. 17BASU03. Abstract of the final report is stated below for reference:

"Stripping related moisture damage has been recognized as one of the major pavement distresses since the early 1990s. The main objective of this study is to establish an effective test protocol to quantify moisture susceptibility of asphalt pavements. To this end, selective test methods (Texas Boiling test, Tensile Strength Ratio, Retained Stability, and Hamburg Wheel Test), and procedures based on surface chemistries and molecular-level mechanistic properties have been investigated in this study. Firstly, a comprehensive list of literature related to moisture damage …