Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Sum Frequency Generation Vibrational Spectroscopy Of Pyridine Hydrogenation On Platinum Nanoparticles, Kaitlin M. Bratlie, Kyriakos Komvopoulos, Gabor A. Somorjai Aug 2008

Sum Frequency Generation Vibrational Spectroscopy Of Pyridine Hydrogenation On Platinum Nanoparticles, Kaitlin M. Bratlie, Kyriakos Komvopoulos, Gabor A. Somorjai

Kaitlin M. Bratlie

Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C5H5NH+) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C5H5NH+ cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed …


Compensation Effect Of Benzene Hydrogenation On Pt(111) And Pt(100) Analyzed By The Selective Energy Transfer Model, Kaitlin M. Bratlie, Yimin Li, Ragnar Larsson, Gabor A. Somorjai Jan 2008

Compensation Effect Of Benzene Hydrogenation On Pt(111) And Pt(100) Analyzed By The Selective Energy Transfer Model, Kaitlin M. Bratlie, Yimin Li, Ragnar Larsson, Gabor A. Somorjai

Kaitlin M. Bratlie

Kinetic measurements at low temperatures (310-360 K) using gas chromatography (GC) for benzene hydrogenation on Pt(100) and Pt(111) single crystal surfaces have been carried out at Torr pressures. These kinetic measurements demonstrated a linear compensation effect for the production of cyclohexane. A detailed application of the model of selective energy transfer to the experimentally obtained results yields the vibrational frequency of the adsorbate leading to reaction. This frequency is attributed to ring distortion modes. The vibrational frequency of the heat bath, or catalyst, is ascribed to a Pt-H mode. An approximate heat of adsorption of the reacting molecule is also …


A Reactive Oxide Overlayer On Rhodium Nanoparticles During Co Oxidation And Its Size Dependence Studied By In Situ Ambient-Pressure X-Ray Photoelectron Spectroscopy, Michael E. Grass, Hendrik Bluhm, Yawen Zhang, Derek Butcher, Jeong Y. Park, Yimin Li, Kaitlin M. Bratlie, Tianfu Zhang, Gabor A. Somorjai Jan 2008

A Reactive Oxide Overlayer On Rhodium Nanoparticles During Co Oxidation And Its Size Dependence Studied By In Situ Ambient-Pressure X-Ray Photoelectron Spectroscopy, Michael E. Grass, Hendrik Bluhm, Yawen Zhang, Derek Butcher, Jeong Y. Park, Yimin Li, Kaitlin M. Bratlie, Tianfu Zhang, Gabor A. Somorjai

Kaitlin M. Bratlie

The smaller, the better: In situ synchrotron ambient pressure X-ray photoelectron spectroscopy allows examination of the oxidation state of the surface of the rhodium nanoparticles (NPs) during CO oxidation in an O2 atmosphere. 2 nm NPs oxidize to a larger extent than 7 nm NPs during reaction at 150-200°C, which correlates with a fivefold increase in turnover frequency for the smaller nanoparticles.