Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Electrical and Computer Engineering

Microstructure

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Impact Of Local Attenuation Approximations When Estimating Correlation Length From Backscattered Ultrasound Echoes, Timothy A. Bigelow, William D. O'Brien Jul 2006

Impact Of Local Attenuation Approximations When Estimating Correlation Length From Backscattered Ultrasound Echoes, Timothy A. Bigelow, William D. O'Brien

Timothy A. Bigelow

Estimating the characteristic correlation length of tissue microstructure from the backscattered power spectrum could improve the diagnostic capability of medical ultrasound. Previously, size estimates were obtained after compensating for source focusing, the frequency-dependent attenuation along the propagation path (total attenuation), and the frequency-dependent attenuation in the scattering region (local attenuation). In this study, the impact of approximations of the local attenuation on the scatterer size estimate was determined using computer simulations and theoretical analysis. The simulations used Gaussian impedance distributions with an effective radius of 25 μm randomly positioned in a homogeneous half-space sonified by a spherically focused source (f/1 …


Signal Processing Strategies That Improve Performance And Understanding Of The Quantitative Ultrasound Spectral Fit Algorithm, Timothy A. Bigelow, William D. O'Brien Sep 2005

Signal Processing Strategies That Improve Performance And Understanding Of The Quantitative Ultrasound Spectral Fit Algorithm, Timothy A. Bigelow, William D. O'Brien

Timothy A. Bigelow

Quantifying the size of the tissue microstructure using the backscattered power spectrum has had limited success due to frequency-dependent attenuation along the propagation path, thus masking the frequency dependence of the scatterer size. Previously, the SPECTRAL FIT algorithm was developed to solve for total attenuation and scatterer size simultaneously [Bigelow et al., J. Acoust. Soc. Am. 117, 1431-1439 (2005)]. Herein, the outcomes from signal processing strategies on the SPECTRAL FIT algorithm are investigated. The signal processing methods can be grouped into two categories, viz., methods that improve the performance of the algorithm and methods that provide insight. The methods that …


Scatterer Size Estimation In Pulse-Echo Ultrasound Using Focused Sources: Calibration Measurements And Phantom Experiments, Timothy A. Bigelow, William D. O'Brien Jul 2004

Scatterer Size Estimation In Pulse-Echo Ultrasound Using Focused Sources: Calibration Measurements And Phantom Experiments, Timothy A. Bigelow, William D. O'Brien

Timothy A. Bigelow

In a companion paper [T. A. Bigelow and W. D. O'Brien Jr., J. Acoust. Soc. Am. 116, 578 (2004)], theory, supported by simulations, showed that accurate scatterer size estimates could be obtained using highly focused sources provided that the derived generalized attenuation-compensation function was used and the velocity potential field near the focus could be approximated as a three-dimensional Gaussian. Herein, the theory is further evaluated via experimental studies. A calibration technique is developed to find the necessary equivalent Gaussian dimensions for a focused source using reflections obtained from a rigid plane scanned through the focus. Then, the theoretical analysis …


Scatterer Size Estimation In Pulse-Echo Ultrasound Using Focused Sources: Theoretical Approximations And Simulation Analysis, Timothy A. Bigelow, William D. O'Brien Jul 2004

Scatterer Size Estimation In Pulse-Echo Ultrasound Using Focused Sources: Theoretical Approximations And Simulation Analysis, Timothy A. Bigelow, William D. O'Brien

Timothy A. Bigelow

The speckle in ultrasound images has long been thought to contain information related to the tissue microstructure. Many different investigators have analyzed the frequency characteristics of the backscattered signals to estimate the scatterer acoustic concentration and size. Previous work has been mostly restricted to unfocused or weakly focused ultrasound sources, thus limiting its implementation with diagnostically relevant fields. Herein, we derive equations capable of estimating the size of a-scatterer for any reasonably focused source provided that the velocity potential field in the focal region can be approximated as a three-dimensional Gaussian beam, scatterers are a sufficient distance from the source, …