Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Electrical and Computer Engineering

David C. Jiles

Phase transitions

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Resistivity Recovery In Gd5si2.09ge1.91 By Annealing, Ravi L. Hadimani, David C. Jiles Jan 2010

Resistivity Recovery In Gd5si2.09ge1.91 By Annealing, Ravi L. Hadimani, David C. Jiles

David C. Jiles

Irreversible change in resistivity occurs in Gd5(SixGe1−x)4 (with 0.41


Estimation Of Second Order Phase Transition Temperature Of The Orthorhombic Phase Of Gd5(Sixge1−X)4 Using Arrott Plots, Ravi L. Hadimani, Y. Melikhov, J. E. Snyder, David C. Jiles Jan 2008

Estimation Of Second Order Phase Transition Temperature Of The Orthorhombic Phase Of Gd5(Sixge1−X)4 Using Arrott Plots, Ravi L. Hadimani, Y. Melikhov, J. E. Snyder, David C. Jiles

David C. Jiles

Gd5(SixGe1−x)4 for 0.41⩽x⩽0.5 is orthorhombic and ferromagnetic at lower temperature, monoclinic and paramagnetic at higher temperature, and shows a first order magnetic-structural phase transition between the two. Magnetic moment versus magnetic field (MH) isotherms were measured just above the first order transitiontemperature for Gd5Si1.95Ge2.05 and Gd5Si2Ge2 samples and the field-induced coupled phase transition from paramagnetic/monoclinic to ferromagnetic/orthorhombic phase was observed. Using the method developed by Arrott [Phys. Rev.108, 1394 (1957)], the ferromagnetic portions of the MH isotherms were used to project the second order magnetic phase transitiontemperature of the orthorhombic phase, a region where the transition does not occur due …