Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Experimental Investigation Of Low Thermal Inertia Thermal Barrier Coatings For Spark Ignition Engines, John Gandolfo Dec 2023

Experimental Investigation Of Low Thermal Inertia Thermal Barrier Coatings For Spark Ignition Engines, John Gandolfo

All Theses

The application of thermal barrier coatings (TBCs) in spark ignition (SI) engines has historically been avoided due to the knock penalty associated with higher surface temperatures induced by the ceramic layer. However, advances in low thermal inertia coatings (i.e., temperature swing coatings) that combine low thermal conductivity with low volumetric heat capacity can prevent excessively high surface temperatures during the intake stroke and reduce or avoid knock while improving performance and efficiency. This thesis experimentally evaluates the effectiveness of these low thermal inertia coatings in a single-cylinder research engine representative of modern SI engines.

First, four pistons coated with a …


Direct Numerical Simulation Of Supercritical Co2 Mixing And Combustion, Syed Mohammad Ovais Aug 2022

Direct Numerical Simulation Of Supercritical Co2 Mixing And Combustion, Syed Mohammad Ovais

All Dissertations

The supercritical CO2 power cycle (sCO2 ) is a relatively new technology, which promises to reduce CO2 emissions with potentially higher efficiencies. However due to challenging conditions posed by supercritical pressures, the mixing and ignition phenomena in sCO2 combustion is relatively less understood and studied. The primary objective of the current study is to investigate these fundamental processes using homogeneous ignition calculations (HMI) and direct numerical simulations (DNS). Broadly, the study is divided into two major parts. In the first part supercritical mixing in sCO2 relevant conditions is investigated. To achieve this, DNS of temporally …


Laminar Flame Speed Estimation From Experimental Data Using A Quasi-Dimensional Turbulent Flame Entrainment Combustion Simulation For Spark Ignition Engines, Akash Desai Dec 2011

Laminar Flame Speed Estimation From Experimental Data Using A Quasi-Dimensional Turbulent Flame Entrainment Combustion Simulation For Spark Ignition Engines, Akash Desai

All Theses

The goal of this research is to develop a thermodynamic simulation of spark-ignition engine combustion that uses a predictive burn-rate model. Previously done thermodynamic engine simulations in MATLAB are based on a specified burn rate model. Also, the effect of turbulence parameters on the rate of mass burn up is not considered. A predictive burn rate model is necessary to study the effect of different fuels on spark ignition engine combustion. The effect of laminar flame speed and turbulent intensity on combustion is difficult to assess experimental due to the difficulty in the measurement of these two variables. Thus, the …