Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Novel Vector Assignment Approach For Inherent Strain Modeling Of Laser Powder Bed Fusion Manufacturing, Lucas M. Morand May 2024

Novel Vector Assignment Approach For Inherent Strain Modeling Of Laser Powder Bed Fusion Manufacturing, Lucas M. Morand

All Dissertations

The expansion of the design space due to additive manufacturing (AM) has been a large motivator for the success of this family of processes. Despite the complexity of the physics in metal laser powder bed fusion AM causing significant stresses and strains in finished parts, the design advantages and subsequent performance improvements continue to drive the expansion of AM. Because the trial-and-error approach to AM part development is cost prohibitive, simulation of prints has become crucial. However, full thermo-mechanical simulation is susceptible to the same pitfall of time and computational cost in order to attain part-scale results. The development of …


Multi-Scale Modeling Of Selective Laser Sintering: From Manufacturing Process And Microstructure To Mechanical Performance In Semi-Crystalline Thermoplastics, Cameron Zadeh May 2024

Multi-Scale Modeling Of Selective Laser Sintering: From Manufacturing Process And Microstructure To Mechanical Performance In Semi-Crystalline Thermoplastics, Cameron Zadeh

All Dissertations

Selective laser sintering is an additive manufacturing process that opens many design possibilities but is limited in its reliability and reproducibility. Numerical simulations validated by experimental data yield insights into the process and resulting part properties, allowing users to make more informed decisions. In this dissertation, a model for the process and microstructure is developed and validated, followed by a coupling to mechanical models to predict part performance. Further developments include a new addition of a reaction kinetics model to the process model to describe the interplay between thermal degradation and melt pool properties, and an exploration of the parameter …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


3d Printing With Photopolymerizable Polyester Resins For Resorbable Medical Device Applications, Mathew Murphy Stanford May 2023

3d Printing With Photopolymerizable Polyester Resins For Resorbable Medical Device Applications, Mathew Murphy Stanford

All Dissertations

In the past decade, the healthcare industry has seen a significant increase in the use of additive manufacturing (AM or “3D printing”) with subsequent improvement in clinical outcomes.As an exceptional AM technology, vat-photopolymerization (VP), often called stereolithography, can create complex structures and has thus been adopted for a range of biomedical applications including surgical guides, temporary implants, and resorbable tissue scaffolds.However, limitations remain in the availability of photopolymerizable resin materials with appropriate mechanical performance, biodegradability, and biocompatibility for application to resorbable medical devices.

The objective of this work was to employ novel photopolymerizable polyester-based macromers in the development of resorbable …


Single Asperity Fretting Corrosion Of Traditional And Additively Manufactured Metallic Biomaterials: Quantitative Analysis From Acetabular Tapers To Micron And Nanometer Scale Tribocorrosion, Annsley Mace May 2022

Single Asperity Fretting Corrosion Of Traditional And Additively Manufactured Metallic Biomaterials: Quantitative Analysis From Acetabular Tapers To Micron And Nanometer Scale Tribocorrosion, Annsley Mace

All Dissertations

Mechanically assisted crevice corrosion (MACC) of metallic biomaterials continues to be a significant degradation mode. This is, in part, due to a lack of understanding of fundamental micron- and sub-micron scale mechanisms of metal degradation in biological environments. Metal-metal (or metal-hard) load bearing surfaces of hip arthroplasties are subjected to fretting crevice corrosion (FCC, one form of MACC). Current work in tribocorrosion involves large contact area tests with multiple asperities, with a distribution of load and wear that changes over time. A more systematic and controlled study of the FCC micro- and nanomechanics is needed.

Therefore, the goal of this …