Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman Dec 2022

In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman

All Dissertations

Heart failure (HF) currently affects over 6 million Americans, 50% of whom die within 5 years of their initial diagnosis. A major contributor to the onset of HF is cardiac fibrosis in the myocardium, which arises when fibroblasts (FBs) are activated in response to heightened mechanical stress from overload conditions like hypertension. Activated FBs remodel the extracellular matrix (ECM) and secrete ECM proteins including collagen. FB remodeling has been studied in the past by applying forces and/or deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be …


Development Of A Tissue Engineered Cardiac Patch, Howard Herbert Dec 2022

Development Of A Tissue Engineered Cardiac Patch, Howard Herbert

All Dissertations

Cardiovascular Disease(CVD) is the leading cause of mortality in the developed world. CVD is most commonly manifested as atherosclerosis of the coronary arteries leading to Myocardial Infarction(MI). After MI, fibrosis of the ventricular wall leads to heart failure(HF), a pandemic affecting 26 million people globally. While therapies are continuously developed to combat HF, the treatment of choice, whole heart transplant, is limited by the availability of donor hearts. It is clear that there is a need to develop a long-term solution to combat HF and its enormous economic burden. Tissue Engineering and Regenerative Medicine holds promise as a possible solution …


Cell-Mediated Elastic Matrix Regeneration Toward Regression Of Abdominal Aortic Aneurysms, Carmen Gacchina Jun 2010

Cell-Mediated Elastic Matrix Regeneration Toward Regression Of Abdominal Aortic Aneurysms, Carmen Gacchina

All Dissertations

Abdominal aortic aneurysms (AAAs) are typically fusiform (symmetric) dilations of the aortic wall most commonly arising below the renal arteries. The progression is typically associated with an activated smooth muscle cell (SMC) phenotype, diminished density of mature medial elastic fibers, and an elevated presence of matrix-degrading enzymes (e.g., matrix-metalloproteases; MMPs), which may ultimately lead to vessel rupture. Currently, no surgical or non-surgical methods are available to regress AAAs via regeneration of new elastin matrices to regain normal vessel contour, particularly due to the inherently poor elastin synthesis by adult vascular cells and absence of methods to stimulate the same. Previously, …


The Development Of A Mesenchymal Stem Cell Based Biphasic Osteochondral Tissue Engineered Construct, Scott Maxson Jan 2010

The Development Of A Mesenchymal Stem Cell Based Biphasic Osteochondral Tissue Engineered Construct, Scott Maxson

All Dissertations

The ability of human articular cartilage to respond to injury is poor. Once cartilage damage has occurred, an irreversible degenerative process can occur and will often lead to osteoarthritis (OA). An estimated 26.9 million of U.S. adults are affected by OA. Osteochondral grafting is currently used to treat OA and osteochondral defects; however, complications can develop at the donor site and defect area. Osteochondral tissue engineering provides a potential treatment option and alternative to osteochondral grafting. The long term goal of this work is to develop a tissue engineered mesenchymal stem cell (MSC) based osteochondral construct to repair cartilage damage. …


A Tissue Engineering Approach To Anterior Cruciate Ligament, Kristofer Sinclair May 2009

A Tissue Engineering Approach To Anterior Cruciate Ligament, Kristofer Sinclair

All Dissertations

Ruptures of the anterior cruciate ligament (ACL) are the most frequent of injuries to the knee due to its role in preventing anterior translation of the tibia. It is estimated that as many as 200,000 Americans per year will suffer from a ruptured ACL, resulting in management costs on the order of 5 billion dollars. Without treatment these patients are unable to return to normal activity, as a consequence of the joint instability found within the ACL deficient knee.
Over the last thirty years, a variety of non-degradable, synthetic fibers have been evaluated for their use in ACL reconstruction; however, …


Cues For Cellular Assembly Of Vascular Elastin Networks, Chandrasekhar Kothapalli Aug 2008

Cues For Cellular Assembly Of Vascular Elastin Networks, Chandrasekhar Kothapalli

All Dissertations

Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is critical to the maintenance of vascular mechanics, besides regulation of cell-signaling pathways involved in injury response and morphogenesis. Thus, congenital absence or disease-mediated degradation of vascular elastin and its malformation within native vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular homeostasis. Current elastin regenerative strategies using tissue engineering principles are limited by the progressive destabilization of tropoelastin mRNA expression in adult vascular cells and the unavailability of scaffolds that can provide cellular cues necessary to up-regulate elastin synthesis and regenerate faithful mimics …