Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya Jan 2022

Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya

Publications and Research

Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson’s disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD.

Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms.

Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were …


Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative Jan 2022

Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative

Publications and Research

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the leading sources of morbidity and mortality in the aging population AD cardinal symptoms include memory and executive function impairment that profoundly alters a patient’s ability to perform activities of daily living. People with mild cognitive impairment (MCI) exhibit many of the early clinical symptoms of patients with AD and have a high chance of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and brain magnetic resonance imaging (MRI). Many groups are working to help automate this process to improve the clinical workflow. Current …


Inter-Subject Correlation While Listening To Minimalist Music: A Study Of Electrophysiological And Behavioral Responses To Steve Reich’S Piano Phase, Tysen Dauer, Duc T. Nguyen, Nick Gang, Jacek P. Dmochowski, Jonathan Berger, Blair Kaneshiro Dec 2021

Inter-Subject Correlation While Listening To Minimalist Music: A Study Of Electrophysiological And Behavioral Responses To Steve Reich’S Piano Phase, Tysen Dauer, Duc T. Nguyen, Nick Gang, Jacek P. Dmochowski, Jonathan Berger, Blair Kaneshiro

Publications and Research

Musical minimalism utilizes the temporal manipulation of restricted collections of rhythmic, melodic, and/or harmonic materials. One example, Steve Reich’s Piano Phase, offers listeners readily audible formal structure with unpredictable events at the local level. For example, pattern recurrences may generate strong expectations which are violated by small temporal and pitch deviations. A hyper-detailed listening strategy prompted by these minute deviations stands in contrast to the type of listening engagement typically cultivated around functional tonal Western music. Recent research has suggested that the inter-subject correlation (ISC) of electroencephalographic (EEG) responses to natural audio-visual stimuli objectively indexes a state of “engagement,” demonstrating …


During Natural Viewing, Neural Processing Of Visual Targets Continues Throughout Saccades, Atanas D. Stankov, Jonathan Touryan, Stephen Gordon, Anthony J. Ries, Jason Ki, Lucas C. Parra Sep 2021

During Natural Viewing, Neural Processing Of Visual Targets Continues Throughout Saccades, Atanas D. Stankov, Jonathan Touryan, Stephen Gordon, Anthony J. Ries, Jason Ki, Lucas C. Parra

Publications and Research

Relatively little is known about visual processing during free-viewing visual search in realistic dynamic environments. Free-viewing is characterized by frequent saccades. During saccades, visual processing is thought to be suppressed, yet we know that the presaccadic visual content can modulate postsaccadic processing. To better understand these processes in a realistic setting, we study here saccades and neural responses elicited by the appearance of visual targets in a realistic virtual environment. While subjects were being driven through a 3D virtual town, they were asked to discriminate between targets that appear on the road. Using a system identification approach, we separated overlapping …


Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano Jul 2021

Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano

Publications and Research

Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called “conventional” tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg− 1 min− …


Predicting Vasovagal Responses: A Model-Based And Machine Learning Approach, Theodore Raphan, Sergei B. Yakushi Mar 2021

Predicting Vasovagal Responses: A Model-Based And Machine Learning Approach, Theodore Raphan, Sergei B. Yakushi

Publications and Research

Vasovagal syncope (VVS) or neurogenically induced fainting has resulted in falls, fractures, and death. Methods to deal with VVS are to use implanted pacemakers or beta blockers. These are often ineffective because the underlying changes in the cardiovascular system that lead to the syncope are incompletely understood and diagnosis of frequent occurrences of VVS is still based on history and a tilt test, in which subjects are passively tilted from a supine position to 20◦ from the spatial vertical (to a 70◦ position) on the tilt table and maintained in that orientation for 10–15 min. Recently, is has been shown …


Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt Dec 2020

Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt

Publications and Research

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.


Multimodal Computational Modeling Of Visual Object Recognition Deficits But Intact Repetition Priming In Schizophrenia, Pejman Sehatpour, Anahita Bassir Nia, Devin Adair, Zhishun Wang, Heloise M. Debaun, Gail Silipo, Antigona Martinez, Daniel C. Javitt Nov 2020

Multimodal Computational Modeling Of Visual Object Recognition Deficits But Intact Repetition Priming In Schizophrenia, Pejman Sehatpour, Anahita Bassir Nia, Devin Adair, Zhishun Wang, Heloise M. Debaun, Gail Silipo, Antigona Martinez, Daniel C. Javitt

Publications and Research

The term perceptual closure refers to the neural processes responsible for “filling-in” missing information in the visual image under highly adverse viewing conditions such as fog or camouflage. Here we used a closure task that required the participants to identify barely recognizable fragmented line-drawings of common objects. Patients with schizophrenia have been shown to perform poorly on this task. Following priming, controls and importantly patients can complete the line-drawings at greater levels of fragmentation behaviorally, suggesting an improvement in their ability to performthe task. Closure phenomena have been shown to involve a distributed network of cortical regions, notably the lateral …


Update On The Use Of Transcranial Electrical Brain Stimulation To Manage Acute And Chronic Covid-19 Symptoms, Giuseppina Pilloni, Marom Bikson, Bashar W. Badran, Mark S. George, Steven A. Kautz, Alexandre Hideki Okano, Abrahão Fontes Baptista, Leigh E. Charvet Nov 2020

Update On The Use Of Transcranial Electrical Brain Stimulation To Manage Acute And Chronic Covid-19 Symptoms, Giuseppina Pilloni, Marom Bikson, Bashar W. Badran, Mark S. George, Steven A. Kautz, Alexandre Hideki Okano, Abrahão Fontes Baptista, Leigh E. Charvet

Publications and Research

The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to develop and deploy treatment approaches that can minimize mortality and morbidity. As infection, resulting illness, and the often prolonged recovery period continue to be characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged as promising non-pharmacological interventions. tES techniques have established therapeutic potential for managing a range of conditions relevant to COVID-19 illness and recovery, and may further be relevant for the general management of increased mental health problems during this time. Furthermore, these tES techniques can be inexpensive, portable, and allow for trained self-administration. Here, …


Olfaction Modulates Inter-Subject Correlation Of Neural Responses, Paul Deguzman, Anshul Jain, Matthias H. Tabert, Lucas C. Parra Jul 2020

Olfaction Modulates Inter-Subject Correlation Of Neural Responses, Paul Deguzman, Anshul Jain, Matthias H. Tabert, Lucas C. Parra

Publications and Research

Odors can be powerful stimulants. It is well-established that odors provide strong cues for recall of locations, people and events. The effects of specific scents on other cognitive functions are less well-established. We hypothesized that scents with different odor qualities will have a different effect on attention. To assess attention, we used Inter-Subject Correlation of the EEG because this metric is strongly modulated by attentional engagement with natural audiovisual stimuli.We predicted that scents known to be “energizing” would increase Inter-Subject Correlation during watching of videos as compared to “calming” scents. In a first experiment, we confirmed this for eucalyptol and …


Functional Connectivity Of Eeg Is Subject-Specific, Associated With Phenotype, And Different From Fmri, Maximilian Nentwich, Lei Ai, Jens Madsen, Qawi K. Telesford, Stefan Haufe, Michael P. Milham, Lucas C. Parra May 2020

Functional Connectivity Of Eeg Is Subject-Specific, Associated With Phenotype, And Different From Fmri, Maximilian Nentwich, Lei Ai, Jens Madsen, Qawi K. Telesford, Stefan Haufe, Michael P. Milham, Lucas C. Parra

Publications and Research

A variety of psychiatric, behavioral and cognitive phenotypes have been linked to brain ‘’functional connectivity’’ -- the pattern of correlation observed between different brain regions. Most commonly assessed using functional magnetic resonance imaging (fMRI), here, we investigate the connectivity-phenotype associations with functional connectivity measured with electroencephalography (EEG), using phase-coupling. We analyzed data from the publicly available Healthy Brain Network Biobank. This database compiles a growing sample of children and adolescents, currently encompassing 1657 individuals. Among a variety of assessment instruments we focus on ten phenotypic and additional demographic measures that capture most of the variance in this sample. The largest …


Can Transcranial Electrical Stimulation Motor Threshold Estimate Individualized Tdcs Doses Over The Prefrontal Cortex? Evidence From Reverse-Calculation Electric Field Modeling, Kevin A. Caulfield, Bashar W. Badran, Xingbao Li, Marom Bikson, Mark S. George May 2020

Can Transcranial Electrical Stimulation Motor Threshold Estimate Individualized Tdcs Doses Over The Prefrontal Cortex? Evidence From Reverse-Calculation Electric Field Modeling, Kevin A. Caulfield, Bashar W. Badran, Xingbao Li, Marom Bikson, Mark S. George

Publications and Research

No abstract provided.


Transcranial Electrical Stimulation Motor Threshold Can Estimate Individualized Tdcs Dosage From Reverse-Calculation Electric-Field Modeling, Kevin A. Caulfield, Bashar W. Badran, William H. Devries, Philipp M. Summers, Emma Kofmehl, Xingbao Li, Jeffrey J. Borckardt, Marom Bikson, Mark S. George Apr 2020

Transcranial Electrical Stimulation Motor Threshold Can Estimate Individualized Tdcs Dosage From Reverse-Calculation Electric-Field Modeling, Kevin A. Caulfield, Bashar W. Badran, William H. Devries, Philipp M. Summers, Emma Kofmehl, Xingbao Li, Jeffrey J. Borckardt, Marom Bikson, Mark S. George

Publications and Research

Background

Unique amongst brain stimulation tools, transcranial direct current stimulation (tDCS) currently lacks an easy or widely implemented method for individualizing dosage.

Objective

We developed a method of reverse-calculating electric-field (E-field) models based on Magnetic Resonance Imaging (MRI) scans that can estimate individualized tDCS dose. We also evaluated an MRI-free method of individualizing tDCS dose by measuring transcranial magnetic stimulation (TMS) motor threshold (MT) and single pulse, suprathreshold transcranial electrical stimulation (TES) MT and regressing it against E-field modeling. Key assumptions of reverse-calculation E-field modeling, including the size of region of interest (ROI) analysis and the linearity of multiple E-field …


Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation For Oromotor Feeding Problems In Newborns: An Open-Label Pilot Study, Bashar W. Badran, Dorothea D. Jenkins, Daniel Cook, Sean Thompson, Morgan Darcy, William H. Devries, Georgia Mappin, Philipp Summers, Marom Bikson, Mark S. George Mar 2020

Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation For Oromotor Feeding Problems In Newborns: An Open-Label Pilot Study, Bashar W. Badran, Dorothea D. Jenkins, Daniel Cook, Sean Thompson, Morgan Darcy, William H. Devries, Georgia Mappin, Philipp Summers, Marom Bikson, Mark S. George

Publications and Research

Neonates born premature or who suffer brain injury at birth often have oral feeding dysfunction and do not meet oral intake requirements needed for discharge. Low oral intake volumes result in extended stays in the hospital (>2 months) and can lead to surgical implant and explant of a gastrostomy tube (G-tube). Prior work suggests pairing vagus nerve stimulation (VNS) with motor activity accelerates functional improvements after stroke, and transcutaneous auricular VNS (taVNS) has emerged as promising noninvasive form of VNS. Pairing taVNS with bottle-feeding rehabilitation may improve oromotor coordination and lead to improved oral intake volumes, ultimately avoiding the …


Enhanced Tes And Tdcs Computational Models By Meninges Emulation, Jimmy Jiang, Dennis Q. Truong, Zeinab Esmaeilpour, Yu Huang, Bashar W. Badran, Marom Bikson Jan 2020

Enhanced Tes And Tdcs Computational Models By Meninges Emulation, Jimmy Jiang, Dennis Q. Truong, Zeinab Esmaeilpour, Yu Huang, Bashar W. Badran, Marom Bikson

Publications and Research

Objective. Understanding how current reaches the brain during transcranial electrical stimulation (tES) underpins efforts to rationalize outcomes and optimize interventions. To this end, computational models of current flow relate applied dose to brain electric field. Conventional tES modeling considers distinct tissues like scalp, skull, cerebrospinal fluid (CSF), gray matter and white matter. The properties of highly conductive CSF are especially important. However, modeling the space between skull and brain as entirely CSF is not an accurate representation of anatomy. The space conventionally modeled as CSF is approximately half meninges (dura, arachnoid, and pia) with lower conductivity. However, the resolution …


Collective Behaviour In Video Viewing: A Thermodynamic Analysis Of Gaze Position, Kate Burleson-Lesser, Flaviano Morone, Paul Deguzman, Lucas C. Parra, Hernan Makse Jan 2017

Collective Behaviour In Video Viewing: A Thermodynamic Analysis Of Gaze Position, Kate Burleson-Lesser, Flaviano Morone, Paul Deguzman, Lucas C. Parra, Hernan Makse

Publications and Research

Videos and commercials produced for large audiences can elicit mixed opinions. We wondered whether this diversity is also reflected in the way individuals watch the videos. To answer this question, we presented 65 commercials with high production value to 25 individuals while recording their eye movements, and asked them to provide preference ratings for each video. We find that gaze positions for the most popular videos are highly correlated. To explain the correlations of eye movements, we model them as ªinteractionsº between individuals. A thermodynamic analysis of these interactions shows that they approach a ªcritical º point such that any …


Computational Model Of Neuron-Astrocyte Interputational Model Of Neuron-Astrocyte Interactions During Focal Seizure Generationactions During Focal Seizure Generation, Davide Reato, Mario Cammarota, Lucas C. Parra, Giorgio Carmignoto Oct 2012

Computational Model Of Neuron-Astrocyte Interputational Model Of Neuron-Astrocyte Interactions During Focal Seizure Generationactions During Focal Seizure Generation, Davide Reato, Mario Cammarota, Lucas C. Parra, Giorgio Carmignoto

Publications and Research

Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability …