Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Series

PDF

Earth Sciences

Publications and Research

MODIS

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Comparison Of Modis/Viirs Cloud Masks Over Ice-Bearing River: On Achieving Consistent Cloud Masking And Improved River Ice Mapping, Simon Kraatz, Reza Khanbilvardi, Peter Romanov Mar 2017

A Comparison Of Modis/Viirs Cloud Masks Over Ice-Bearing River: On Achieving Consistent Cloud Masking And Improved River Ice Mapping, Simon Kraatz, Reza Khanbilvardi, Peter Romanov

Publications and Research

The capability of frequently and accurately monitoring ice on rivers is important, since it may be possible to timely identify ice accumulations corresponding to ice jams. Ice jams are dam-like structures formed from arrested ice floes, and may cause rapid flooding. To inform on this potential hazard, the CREST River Ice Observing System (CRIOS) produces ice cover maps based on MODIS and VIIRS overpass data at several locations, including the Susquehanna River. CRIOS uses the respective platform’s automatically produced cloud masks to discriminate ice/snow covered grid cells from clouds. However, since cloud masks are produced using each instrument’s data, and …


Development Of A Ground Based Remote Sensing Approach For Direct Evaluation Of Aerosol-Cloud Interaction, Bomidi Lakshmi Madhavan, Yuzhe He, Yonghua Wu, Barry Gross, Fred Moshary, Samir Ahmed Oct 2012

Development Of A Ground Based Remote Sensing Approach For Direct Evaluation Of Aerosol-Cloud Interaction, Bomidi Lakshmi Madhavan, Yuzhe He, Yonghua Wu, Barry Gross, Fred Moshary, Samir Ahmed

Publications and Research

The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods to assess the Aerosol-Cloud Indirect Effect directly, as space-borne retrievals are not directly suitable for simultaneous aerosol/cloud retrievals. To illustrate some of these difficulties, a statistical assessment of existing multispectral imagers on geostationary (e.g., GOES)/Moderate Resolution Imaging Spectroradiometer (MODIS) satellite retrievals of the Cloud Droplet Effective Radius (Reff) showed significant biases especially at larger solar zenith angles, …