Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

When The Brain Plays A Game: Neural Responses To Visual Dynamics During Naturalistic Visual Tasks, Jason Ki Jan 2021

When The Brain Plays A Game: Neural Responses To Visual Dynamics During Naturalistic Visual Tasks, Jason Ki

Dissertations and Theses

Many day-to-day tasks involve processing of complex visual information in a continuous stream. While much of our knowledge on visual processing has been established from reductionist approaches in lab-controlled settings, very little is known about the processing of complex dynamic stimuli experienced in everyday scenarios. Traditional investigations employ event-related paradigms that involve presentation of simple stimuli at select locations in visual space and discrete moments in time. In contrast, visual stimuli in real-life are highly dynamic, spatially-heterogeneous, and semantically rich. Moreover, traditional experiments impose unnatural task constraints (e.g., inhibited saccades), thus, it is unclear whether theories developed under the reductionist …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …