Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Senior Design Project - Ev Charger And Distributed Energy Resources, Eric Iliyev, Mostafa Younes, Abanoub Said, Carlos Figueroa, Ahmed Mohamed Jan 2023

Senior Design Project - Ev Charger And Distributed Energy Resources, Eric Iliyev, Mostafa Younes, Abanoub Said, Carlos Figueroa, Ahmed Mohamed

Open Educational Resources

No abstract provided.


Battery Energy Storage Systems Applications And Deployment In Dense Urban Areas, Mohamed K. Kamaludeen Jan 2023

Battery Energy Storage Systems Applications And Deployment In Dense Urban Areas, Mohamed K. Kamaludeen

Dissertations and Theses

Energy Storage has emerged as an important focus of the U.S. federal government, which has established the goal of developing global leadership in energy storage and has a near-term focus on strengthening the supply chain, manufacturing, and funding streams available to achieve the overarching objectives. At the state level, similar efforts are underway in which policy objectives have set aggressive targets around energy storage deployment. New York State, through its landmark climate act “CLCPA” and subsequent Energy Storage roadmap 2.0, has set one of the most aggressive goals in the Country targeting 6,000MW of energy storage by 2030. While much …


The Capabilities And Limitations Of Flywheel-Based Energy Storage System Pertaining To Subways In The Event Of A Power Outage, Jaskaran Singh Jan 2022

The Capabilities And Limitations Of Flywheel-Based Energy Storage System Pertaining To Subways In The Event Of A Power Outage, Jaskaran Singh

Dissertations and Theses

In the city that never sleeps, power outages or blackouts can be a shock, especially if you are on a train amid one. For example, during the infamous 2003 blackout, thousands of people were left stuck and stranded in parts of Northeastern United States. In particular, with no trains or buses in service throughout the 5 boroughs of NYC, those stranded essentially had no way to go back home. Hotels, terminals, and airports alike became places of camping as the city seemed to come to a halt. For the sake of public safety and transit efficiency, this study explores a …


Use Of Battery Systems For Var Support In Con Edison’S Distribution Network/Substation, Elihu Nyemah Jan 2022

Use Of Battery Systems For Var Support In Con Edison’S Distribution Network/Substation, Elihu Nyemah

Dissertations and Theses

Battery Energy Storage System (BESS) can facilitate the integration of Distributed Energy Resources (DER) and help create a more reliable grid by providing multiple services including reactive power (VAR) support. This research will investigate the use of smart inverters to provide VAR support, assess the impact it has on the lifetime of a BESS and determine how the adverse effects (if any) can be mitigated/eliminated. To achieved this, a 7.5MW/30MWh grid connected BESS located at Con Edison substations have been modeled in MATLAB/Simulink. Preliminary assessment of the system showed that DC current to/from the battery is oscillating (non-zero) during reactive …


Coordinated Control For Dc Energy Hubs Involving Ders, Evs, And Subway Systems, Rohama Ahmad Jan 2021

Coordinated Control For Dc Energy Hubs Involving Ders, Evs, And Subway Systems, Rohama Ahmad

Dissertations and Theses

No abstract provided.


Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir Jan 2021

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir

Publications and Research

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong …


Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu Jan 2021

Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu

Dissertations and Theses

Today’s global energy challenges pose an urgent need to electrify transportation and better store intermittent renewable energy sources (e.g., solar and wind energy). For such large-scale battery applications, aluminum batteries are a promising “beyond lithium-ion” technology due to the high volumetric capacity, earth abundance, low-cost, and inherent safety of aluminum metal. However, there are very few compatible positive electrode materials that exhibit high energy density and cycling stability, in part due to the challenges of electrochemically intercalating highly charged Al3+ cations. Recently, graphite has been demonstrated as a promising positive electrode material in non-aqueous rechargeable aluminum batteries, which store …


Control Hierarchies For Critical Infrastructures In Smart Grid Using Reinforcement Learning And Metaheuristic Optimization, Oindrilla Dutta Jan 2021

Control Hierarchies For Critical Infrastructures In Smart Grid Using Reinforcement Learning And Metaheuristic Optimization, Oindrilla Dutta

Dissertations and Theses

The objective of this work is to develop robust control framework for interdependent smart grid infrastructures comprising two critical infrastructures: 1) power distribution networks that are characterized by high penetration of distributed energy resources (DERs), and 2) DC-rail transportation systems in congested urban areas. The rising integration of DERs into the power grid is causing a paradigm shift in the power distribution network. Consequently, new control challenges for efficient and robust operation of the power grid have surfaced. For instance, the intermittency of renewable energy resources necessitates coordinated control of power flows, voltage regulators, and protection device settings of the …


Voltage Security Optimization For Power Transmission Systems, Tamer Ibrahim Jan 2021

Voltage Security Optimization For Power Transmission Systems, Tamer Ibrahim

Dissertations and Theses

This project proposes an optimization approach for day-ahead reactive power planning to ensure voltage security in transmission networks. The problem is formulated as a voltage-secure multi-period optimal reactive power dispatch (MP-ORPD) problem. The optimization approach searches for optimal set-points of dynamic and static reactive power (var) resources. Specifically, the output includes set-points for switching shunts, transformer taps, and voltage magnitudes at the regulated buses. The primary goal is to maximize the dynamic reactive power reserve of the system, by minimizing the reactive power supplied by synchronous generators. The secondary goal is to minimize changes in the settings of switching shunts …


Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov Jun 2020

Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov

Dissertations, Theses, and Capstone Projects

Despite revolutionizing the world of portable electronics, the contemporary lithium-ion battery (LIB) suffers from challenges associated with the cost, safety, and environmental impact of transition metal oxide-based intercalation cathodes. To alleviate these issues, naturally occurring organic molecules may serve as sustainable alternatives to traditional inorganic cathode materials. The electrochemical properties of organic compounds are derived from redox-active functional groups containing oxygen, nitrogen and sulfur. Additionally, these functional groups are capable of coordinating metal ions beyond lithium, allowing for compatibility with sodium-ion batteries (SIBs) and other earth abundant metal-based energy storage systems. However, despite competitive performance against commercialized cathode materials, much …


Influence Graphs For Modeling Of Cascading Failures In Electric Distribution Networks, Muhammad S. Bhatti Jan 2020

Influence Graphs For Modeling Of Cascading Failures In Electric Distribution Networks, Muhammad S. Bhatti

Dissertations and Theses

Power Grids are one of the most intricate systems and greatly affect economic, political, and social aspects of contemporary life. A well-operated power system consists of many control devices and protection methods to prevent the interruption of power to consumers. However, such systems are highly vulnerable to severe events; for instance, natural disasters, cyber-attacks, mal-function of control devices, etc. The occurrence of these odd events may lead to cascading failures, which are prominent contributors to blackouts.

This paper focuses on the development of a cascade model in a distribution network using Newton-Raphson’s power flow method to study the impact of …


Recuperation Of Regenerative Braking Energy In Electric Rail Transit Systems, Mahdiyeh Khodaparastan Jan 2020

Recuperation Of Regenerative Braking Energy In Electric Rail Transit Systems, Mahdiyeh Khodaparastan

Dissertations and Theses

Electric rail transit systems are large consumers of energy. In trains with regenerative braking capability, a fraction of the energy used to power a train is regenerated during braking. This regenerated energy, if not properly captured, is typically dumped in the form of heat to avoid overvoltage. Finding a way to recuperate regenerative braking energy can result in substantial economic as well as technical benefits. Regenerative braking energy can be effectively recuperated using wayside energy storage, reversible substations, or hybrid storage/reversible substation systems. In this research study, we compare these recuperation techniques and investigate their application in New York City …


Ent1201 Introduction To Electricity For Live Entertainment Syllabus, Miguel A. Valderrama Apr 2019

Ent1201 Introduction To Electricity For Live Entertainment Syllabus, Miguel A. Valderrama

Open Educational Resources

No abstract provided.


Ict-Enabled Control And Energy Management Of Community Microgrids For Resilient Smart Grid Operation, Mahmoud Saleh Jan 2019

Ict-Enabled Control And Energy Management Of Community Microgrids For Resilient Smart Grid Operation, Mahmoud Saleh

Dissertations and Theses

Our research has focused on developing novel controllers and algorithms to enhance the resilience of the power grid and increase its readiness level against major disturbances.

The U.S. power grid currently encounters two main challenges: (1) the massive and extended blackouts caused by natural disasters, such as hurricane Sandy. These blackouts have raised a national call to explore innovative approaches for enhanced grid resiliency. Scrutinizing how previous blackouts initiated and propagated throughout the power grid, the major reasons are lack of situational awareness, lack of real-time monitoring and control, underdeveloped controllers at both the transmission and distribution levels, and lack …


Effect Of Wireless Communication Delay On Dc Microgrids Performance, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Oct 2018

Effect Of Wireless Communication Delay On Dc Microgrids Performance, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper investigates the effect of wireless communication technologies latency on the converters and the bus voltage of centrally communication based controlled DC microgrids (MGs) during islanding. A DC microgrid with its communication based control scheme was modeled to show the impact of latency. Simulation results show that the impact may be severe depending on the design, and the operational condition of the microgrid before latency occurs.


Impact Of Communication Latency On The Bus Voltage Of Centrally Controlled Dc Microgrid During Islanding, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Oct 2018

Impact Of Communication Latency On The Bus Voltage Of Centrally Controlled Dc Microgrid During Islanding, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

Maintaining a sustainable and reliable source of energy to supply critical loads within a renewable energy based microgrid (MG) during blackouts is directly related to its bus voltage variations. For example, voltage variation might trigger protection devices and disconnect DERs within the MG. Centrally controlled MGs (CCMGs) type is dependent on communication. Therefore, it is very important to analyze the impact of communication networks performance degradation, such as latency, on the bus voltage of CCMGs. This paper investigates the effect of wireless communication technologies latency on the bus voltage and performance of centralized DC MGs. Two mathematical models were developed …


Applications Of Complex Network Analysis In Electric Power Systems, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed May 2018

Applications Of Complex Network Analysis In Electric Power Systems, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper provides a review of the research conducted on complex network analysis (CNA) in electric power systems. Moreover, a new approach is presented to find optimal locations for microgrids (MGs) in electric distribution systems (EDS) utilizing complex network analysis. The optimal placement in this paper points to the location that will result in enhanced grid resilience, reduced power losses and line loading, better voltage stability, and a supply to critical loads during a blackout. The criteria used to point out the optimal placement of the MGs were predicated on the centrality analysis selected from the complex network theory, the …


Tolerance Sensitivity Analysis And Robust Optimal Design Method Of A Surface-Mounted Permanent Magnet Motor By Using A Hybrid Response Surface Method Considering Manufacturing Tolerances, Cha-Seung Jun, Byung-Il Kwon, Ohbong Kwon May 2018

Tolerance Sensitivity Analysis And Robust Optimal Design Method Of A Surface-Mounted Permanent Magnet Motor By Using A Hybrid Response Surface Method Considering Manufacturing Tolerances, Cha-Seung Jun, Byung-Il Kwon, Ohbong Kwon

Publications and Research

This paper presents a robust optimal design method using a hybrid response surface method (H-RSM) which directly finds an optimal point satisfying a target Z-value or a probability of failure. Through three steps, this paper achieves the goal that is to increase the open-circuit airgap flux (OCAF) in a surface-mounted permanent magnet motor and decrease its variation caused by variations of the airgap lengths including an additional one between permanent magnets and rotor back yoke. First, the OCAF equation is derived from the magnetic equivalent circuit (MEC) considering the additional airgap. Then, the equation is validated by comparing its results …


Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed Jan 2018

Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

Centralized communication-based control is one of the main methods that can be implemented to achieve autonomous advanced energy management capabilities in DC microgrids. However, its major limitation is the fact that communication bandwidth and computation resources are limited in practical applications. This can be often improved by avoiding redundant communications and complex computations. In this paper, an autonomous communication-based hybrid state/event driven control scheme is proposed. This control scheme is hierarchical and heuristic, such that on the primary control level, it encompasses state-driven local controllers, and on the secondary control level, an event-driven MG centralized controller (MGCC) is used. This …


Analysis Of The Benefits Of Regenerative Braking In Urban Railway Traction System, Khan M. Adnan Jan 2018

Analysis Of The Benefits Of Regenerative Braking In Urban Railway Traction System, Khan M. Adnan

Dissertations and Theses

Increasing environmental awareness and the requirement for lower project costs is forcing transit system suppliers to think more innovatively and engineer more accurately to strengthen their competitive edge. Of late, clients more often desire a system that is optimized to minimize the energy consumed during operation; a requirement that is often imposed upon transit system suppliers through financially binding energy commitments.

Electric rail transit systems are large consumers of energy. In trains with regenerative braking capability, a fraction of the energy used to power a train is regenerated during braking. This regenerated energy, if recuperated and reused, can result in …


A Quantification Analysis On Potential Use Of Recuperated Regenerative Braking Energy From Nyct Subways Into Charging Electric Buses, Ahmed S. Rahman Jan 2018

A Quantification Analysis On Potential Use Of Recuperated Regenerative Braking Energy From Nyct Subways Into Charging Electric Buses, Ahmed S. Rahman

Dissertations and Theses

The New York Metropolitan Transportation Authority (MTA) is one of the biggest consumers of electricity in east coast of the United States. According to a report published by Dayton T. Brown in 2013, MTA consumes approximately 2150 GWh electrical energy per year for traction power, where the New York City Transit (NYCT) alone is a consumer of about 80% of the total annual MTA energy consumption. This continuous high demand for electricity from a single organization opens research opportunities to search for alternative ways to reduce the needs. NYCT Subways has an existing total rolling stock of 6,418 train cars …


Energy Management System Of Hybrid Wayside Storage In Urban Railway Traction, Anil Rajpatei Jan 2018

Energy Management System Of Hybrid Wayside Storage In Urban Railway Traction, Anil Rajpatei

Dissertations and Theses

In a city that never sleeps, NYC, also called the big apple, there is the largest population in the United States with close to 9 million people. In addition, it is the second wealthiest city in the world according to ranking by gross domestic product (GDP). Being such a densely populated city, people cannot only rely on their vehicles as the only source of commute. The alternative is to use mass transit. New York City Transit (NYCT) is the largest mass transit system that offers commuting services via subway or buses. More than half of the population rely on mass …


A Case Study On Grid Impacts Of Electric Vehicles On New York City Power Grid, Amir Abbas Rizvi Jan 2018

A Case Study On Grid Impacts Of Electric Vehicles On New York City Power Grid, Amir Abbas Rizvi

Dissertations and Theses

The U.S. electric power industry is anticipating a huge increase in electricity demand in the future due to reformation of the transportation industry. In this work, we focus on electric cars and their impact on the transportation industry as well as the electric grid. The increase in number of electric cars over the years and their growing number indicates that in the future, transportation means are going to largely depend upon electricity to achieve cost and environmental benefits. In other words, in future, the transportation will be impacting the electric grid and vice versa.

The surge in electric vehicles on …


Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Nov 2017

Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper further describes our work presented in Industry Application Society 2016 Conference, with more details related to the control and operation of the microgrid. The DC microgrid facility was custom designed and implemented at CCNY with minimal off-the-shelf components to enable flexibility and reconfiguration capability. The design steps, requirements, and experimental results of the developed testbed were discussed. As a case study, a central controller for energy management algorithm was developed and tested under several operational scenarios. The experimental results verify the applicability of the developed testbed for validating DC microgrid controllers.


Energy Management Algorithm For Resilient Controlled Delivery Grids, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed, Haim Grebel, Roberto Rojas-Cessa Oct 2017

Energy Management Algorithm For Resilient Controlled Delivery Grids, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed, Haim Grebel, Roberto Rojas-Cessa

Publications and Research

Resilience of the power grid is most challenged at power blackouts since the issues that led to it may not be fully resolved by the time the power is back. In this paper, a Real-Time Energy Management Algorithm (RTEMA) has been developed to increase the resilience of power systems based on the controlled delivery grid (CDG) concept. In a CDG, loads communicate with a central controller, periodically sending requests for power. The central controller runs an algorithm, based on which it may decide whether to grant the requested energy fully or partially. Therefore, the CDG limits loads discretionary access to …


Quantitative Analysis Of Regenerative Energy In Electric Rail Traction Systems, Mahmoud Saleh, Oindrilla Dutta, Yusef Esa, Ahmed Mohamed Oct 2017

Quantitative Analysis Of Regenerative Energy In Electric Rail Traction Systems, Mahmoud Saleh, Oindrilla Dutta, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper aims at determining the influential factors affecting regenerative braking energy in DC rail transit systems. This has been achieved by quantitatively evaluating the dependence of regenerative energy on various parameters, such as vehicle dynamics, train scheduling, ground inclination and efficiency of the electrical devices. The recuperated power and energy have been presented by a mathematical model, comprising of a set of empirical forms, which allows for thorough analysis. A detailed simulation model of a typical DC-traction system has been developed to validate the developed empirical forms. The results verified the validity of the proposed mathematical model, and demonstrated …


Optimal Microgrids Placement In Electric Distribution Systems Using Complex Network Framework, Mahmoud Saleh, Yusef Esa, Nwabueze Onuorah, Ahmed Mohamed Oct 2017

Optimal Microgrids Placement In Electric Distribution Systems Using Complex Network Framework, Mahmoud Saleh, Yusef Esa, Nwabueze Onuorah, Ahmed Mohamed

Publications and Research

This paper provides a new approach to find the optimal location for Microgrids (MGs) in electric distribution systems using complex network analysis. An optimal location in this paper refers to a location that would result in increased grid resilience, reduced power losses, less line loading, higher voltage stability and secured supply to critical loads during power outage. The criteria used to find the optimal placement of MGs were based on the centrality analysis adopted from complex network theory, the center of mass concept used in physics, and the controlled delivery grid (CDG) concept. An IEEE 30-bus system was used as …


Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Apr 2017

Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

In this paper, an autonomous communication-based centralized control for DC microgrids (MG) has been developed and implemented. The proposed controller enables smooth transition between various operating modes. Finite state machine (FSM) has been used to mathematically describe the various operating modes (states), and events that may lead to mode changes (transitions). Therefore, the developed centralized controller aims at optimizing the performance of MG during all possible operational scenarios, while maintaining its reliability and stability. Results of selected cases have been presented. These results show stable transition between modes, verifying the validity and applicability of the proposed controller.


A Hybrid State/Event Driven Communication-Based Control For Dc Microgrids, Yusef Esa Jan 2017

A Hybrid State/Event Driven Communication-Based Control For Dc Microgrids, Yusef Esa

Dissertations and Theses

The U.S. electric power industry is undergoing unprecedented changes triggered by the growing electricity demand, and the national efforts to reduce greenhouse gas emissions. Moreover, there is a call for increased power grid resiliency, survivability and self-healing capabilities. As a result of these challenges, the smart grid concept emerged. One of the main pillars of the smart grid is microgrids. In this thesis, the technical merits of clustering multiple microgrids during blackouts on the overall stability and supply availability have been investigated.

We propose to use the existing underground distribution grid infrastructure, if applicable, during blackouts to form microgrid clusters. …


Property Analysis Of Silylamine Type Reversible Ionic Liquids For Use As A Thermal Safety Switch In Batteries, Showmik Podder Jan 2017

Property Analysis Of Silylamine Type Reversible Ionic Liquids For Use As A Thermal Safety Switch In Batteries, Showmik Podder

Dissertations and Theses

The increased capacity of the modern battery system has also brought about safety apprehensions. Uncontrollable runaway reactions are a big concern in these systems; these reactions are the result of in situ heat generation and very much increase the risk of explosions and device failures. The concept of this work is to provide a preliminary understanding into the use of a type of switchable solvent known as reversible ionic liquids (RevILs) and their feasibility in being used in electrolytes as a thermally-controlled reversible safety switch. In their pure forms these switchable solvents experience a dramatic change in their properties upon …