Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Biomedical Engineering and Bioengineering

Drosophila

Articles 1 - 7 of 7

Full-Text Articles in Engineering

A Micro-Optic Stalk (Muos) System To Model The Collective Migration Of Retinal Neuroblasts, Stephanie Zhang, Miles Markey, Caroline D. Pena, Tadmiri Venkatesh, Maribel Vasquez Mar 2020

A Micro-Optic Stalk (Muos) System To Model The Collective Migration Of Retinal Neuroblasts, Stephanie Zhang, Miles Markey, Caroline D. Pena, Tadmiri Venkatesh, Maribel Vasquez

Publications and Research

Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes …


Invertebrate Retinal Progenitors As Regenerative Models In A Microfluidic System, Caroline D. Pena, Stephanie Zhang, Robert Majeska, Tadmiri Venkatesh, Maribel Vazquez Oct 2019

Invertebrate Retinal Progenitors As Regenerative Models In A Microfluidic System, Caroline D. Pena, Stephanie Zhang, Robert Majeska, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insuffcient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to …


Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh Jan 2019

Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh

Dissertations and Theses

Neuron-glia communication is crucial to the development, plasticity, and repair of the nervous system (NS). While neurons are well known to conduct electrical impulses that transfer biological information and stimuli throughout the NS, our understanding of the roles of glia continues to evolve from when the cells were largely believed to act solely for neuronal support. Recent decades of research has shown that glia can alter metabolism, conduct impulses and change phenotype for NS repair. NG interactions have, thereby, become heavily researched in varied areas of biomedical engineering, including embryogenesis, neural regeneration, growth, and intracellular synaptic activity. However, while NG …


Collective Behavior Of Drosophila Melanogaster Neural Progenitor And Imaginal Disc Cells Within Controlled Microenvironments, Caroline D. Pena Jan 2019

Collective Behavior Of Drosophila Melanogaster Neural Progenitor And Imaginal Disc Cells Within Controlled Microenvironments, Caroline D. Pena

Dissertations and Theses

Regenerative therapies for the damaged visual system have introduced stem-derived cells to recapitulate developmental processes and initiate functional regeneration in different components of the eye. The developing visual system in Drosophila Melanogaster offers a model in which to analyze the associated processes in retinogenesis. The optic nerve is critical to vision and is developmentally preceded in Drosophila by a structure called the Optic Stalk (OS). Collective migration of neural and retinal progenitor cells (RPCs) from the developing brain lobes (DBL) to the Imaginal Disc (ID), through the OS, is a fundamental part of regenerative strategies in retina. Developmental signals governing …


Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang Jan 2018

Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang

Dissertations and Theses

More than 172 million people are influenced by a retinal disorder that stems from either age-related or developmental causes. Of those, 1.5 million people endure a developmental retinal disorder. In the developing retina, neural cells undergo a series of highly complicated differentiation and migration process. A main cause of these diseases is abnormal collective migration of neural progenitors hindering the retinogenesis process. However, our grasp of collective migration and signaling molecules, critical to the developing retina, is incompletely understood. Understanding the molecular mechanisms, such as the fibroblast growth factor pathway, that regulate glial and neuronal migration provides decisive insights in …


Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez Mar 2016

Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

BACKGROUND:

The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.

NEW METHOD:

The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and …


Chemotaxis Of Drosophila Glia With Controlled Microenvironments, Cade Beck Jan 2012

Chemotaxis Of Drosophila Glia With Controlled Microenvironments, Cade Beck

Dissertations and Theses

No abstract provided.