Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina Jun 2023

3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina

Mechanical Engineering

This project is to design, build, and test a 3D-printable aircraft. The goal is to create a final design that will be able to fly for the longest duration possible, around 20 seconds. To determine the correct preliminary design and manufacturing process for a 3D printed RC aircraft, an analysis of multiple design options and manufacturing materials was performed. This allowed for a variety of choices for aircraft type, airfoil design, structure, among other topics to be narrowed down to the most promising option. It has been found that the aircraft will follow a design similar to industry motor-gliders, with …


Blds Pressure Belt, Hailey Earnest, Sean Casteel, Benjamin Bons, Biren Rama Jun 2021

Blds Pressure Belt, Hailey Earnest, Sean Casteel, Benjamin Bons, Biren Rama

Mechanical Engineering

Dr. Westphal has a Boundary Layer Data System (BLDS) that is used to take pressure measurements on the surface of the aircraft. Our team has created a design and manufacturing method for producing the corresponding pressure belt that attaches to Dr. Westphal's system to obtain pressure data.


Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett Jun 2021

Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett

Master's Theses

As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, …


Optimum Design Of Composite Wing Spar Subjected To Fatigue Loadings, Juan Reuben Lazarin Jun 2017

Optimum Design Of Composite Wing Spar Subjected To Fatigue Loadings, Juan Reuben Lazarin

Master's Theses

Composites are now being incorporated into aircraft designs because of their high strength to weight ratio compared to traditional metal materials. Due to the complexity of the material, composite parts are presently being over designed to satisfy static and fatigue requirements. A greater understanding of composite fatigue behavior will allow for even greater weight savings leading to increased fuel economy. A critical part of an aircraft that is subjected to fatigue bending loads are its wings. The forces acting on the wings include its lift distribution, powerplant, and fuel which can be carried in the wing body. When in flight …


A Method For Evaluating Aircraft Electric Power System Sizing And Failure Resiliency, Cory Kenneth Kross Jan 2017

A Method For Evaluating Aircraft Electric Power System Sizing And Failure Resiliency, Cory Kenneth Kross

Master's Theses

With the More Electric Aircraft paradigm, commercial commuter aircraft are increasing the size and complexity of electrical power systems by increasing the number of electrical loads. With this increase in complexity comes a need to analyze electrical power systems using new tools. The Hybrid Power System Optimizer (HyPSO) developed by Airbus SAS is a simulator designed to analyze new aircraft power systems. This thesis project will first provide a method to assess the reliability of complex aircraft electrical power systems before and after failure and reconfiguration events. Next, an add-on to HyPSO is developed to integrate the previously developed reliability …


Electric Commuter Multicopter, Marley Hunter Miller, Blake Sperry, Ike Sheppard, Olliver Fredrick Kunz, Sam Juday, Alex O'Hearn, Kyle Seth Kruse, Arthur Norwood, Jarrell Washington Jun 2015

Electric Commuter Multicopter, Marley Hunter Miller, Blake Sperry, Ike Sheppard, Olliver Fredrick Kunz, Sam Juday, Alex O'Hearn, Kyle Seth Kruse, Arthur Norwood, Jarrell Washington

Mechanical Engineering

This document describes the design, analysis, and overall goals of the Electric Commuter Multicopter (ECM) Senior Project. It was presented by Bob Addis and Bill Burner to the senior mechanical engineering class of 2015 at Cal Poly, San Luis Obispo. The progress and development of the project are described in detail and to an extent that an individual or group with similar aspirations can construct their own multicopter or expand upon this one. The goal of this project is to create an Ultralight, as defined by FAA Part 103, commuter multicopter vehicle capable of transporting an individual to and from …


Design, Fabrication And Test Of An Operationally Responsive Aircraft With Niirs Evaluated Imager, Colin Burt Aug 2013

Design, Fabrication And Test Of An Operationally Responsive Aircraft With Niirs Evaluated Imager, Colin Burt

Master's Theses

Unmanned Aerial Systems (UAS) are a growing asset. Currently UAS are on the cutting edge with resources being spent developing the capabilities mostly for military use. This project is intended to create a system for non-defense customers. Specifically, the Operationally Responsive Aircraft (ORA) will appeal to academic institutions, individual consumers, future customers new to the UAS industry, as well as anybody trying to get airtime for custom sensors.

The system developed in this project utilizes dual aluminum external payload bays attached to a ParkZone Radian aircraft. Each external payload bay can contain approximately 500 $\text{cm}^3$, with a height and width …


Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise Jun 2013

Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise

Mechanical Engineering

Following the development of Aircraft Collision Avoidance Technology (ACAT) by the National Aeronautics and Space Administration (NASA), a need arose to transition the life-saving technology to aid the general aviation community. Considering the realistic cost of implementation, it was decided that the technology should be adapted to function on any smartphone, using that device as an end-to-end solution to sense, process, and alert the pilot to imminent threats. In September of 2012, the SAS (Sense and Survive) Senior Project Team at California Polytechnic University (Cal Poly), San Luis Obispo was assigned the task of using smartphone technology to accurately sense …


Air Cooling For Aecm Module, Final Project Report, Kevin Whipp, Abraham Bruno Caulk Dec 2009

Air Cooling For Aecm Module, Final Project Report, Kevin Whipp, Abraham Bruno Caulk

Mechanical Engineering

Advancements in electronics have created the need for improved cooling standards. The AECM standard, created to replace the antiquated ARINC 600 specification for aircraft, draws inspiration from a cooling specification known as VITA 48.2. The ARINC standard is in early stages of development and this project researches the feasibility of using air as a convective fluid instead of a liquid, the fluid used in the VITA specification.

A performance factor calculated from the ratio of the heat dissipated by convective heat exchanger plates over the power used to cause forced convective flow over said plates helps to quantify the effectiveness …


Multidisciplinary Design Optimization Of An Extreme Aspect Ratio Hale Uav, Bryan J. Morrisey Jun 2009

Multidisciplinary Design Optimization Of An Extreme Aspect Ratio Hale Uav, Bryan J. Morrisey

Master's Theses

ABSTRACT

Multidisciplinary Design Optimization of an Extreme Aspect Ratio HALE UAV

Bryan J. Morrisey

Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. Presently, several development efforts are underway in this field, including a project sponsored by DARPA that aims at producing an aircraft that can sustain flight for multiple years and …