Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

California Polytechnic State University, San Luis Obispo

Electro-Mechanical Systems

Robot

Articles 1 - 6 of 6

Full-Text Articles in Engineering

8 Dof Quadrupedal Hopping Robot, Clayton T. Elwell, John Bennett, Tyler Mccue, Daniel Munic Jun 2022

8 Dof Quadrupedal Hopping Robot, Clayton T. Elwell, John Bennett, Tyler Mccue, Daniel Munic

Mechanical Engineering

The goal of our senior project was to fabricate an eight degree of freedom (DOF) prototypical quadrupedal robot, develop a controller than commands the quadruped to repeatedly jump 10 cm in the air, and fabricate a modular test stand to safely deploy our controller on the quadruped. The creation of a functional quadruped will bring attention to Dr. Siyuan Xing and Charlie Refvem’s research group, Cal Poly Legged Robots, and will give future Cal Poly undergraduate and graduate students a learning tool to explore dynamic control of biomimetic robotic systems.

Over the course of our senior project, we successfully manufactured …


Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara Jun 2020

Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara

Mechanical Engineering

The goal of this document is to clearly define the problem parameters and project objectives and to clearly describe the design process, planned final design, and manufacturing and testing procedures for the senior design project of Team 26: SAVER -- the Surface Autonomous Vehicle for Emergency Rescue. This is both for the purpose of project planning and for clear communication between all parties involved in the project.

The objective of the SAVER project is to develop a proof of concept for an autonomous maritime search and rescue vehicle for aiding in man-overboard missions. To accomplish this goal, a list of …


Design And Testing Of A Novel Adhesion And Locomotion Method For Wall Climbing Vehicles, Jim R. Stefani Jun 2016

Design And Testing Of A Novel Adhesion And Locomotion Method For Wall Climbing Vehicles, Jim R. Stefani

Master's Theses

The objective of this project was to design, construct and test a wall climbing vehicle which uses a novel vacuum tread system for both adhesion and locomotion. The design and manufacturing of this proof of concept vehicle is detailed with particular emphasis on the design decisions that proved most impactful to the performance of both the vehicle and the tread system. Adhesion performance was characterized by a series of tests that validate the concept, but also identify improvements and design recommendations for future embodiments of the adhesion/locomotion system.


Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel Jun 2014

Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel

Mechanical Engineering

This project is the second iteration of an automated foosball table for Yaskawa America as a trade show display. The table is meant to provide an interactive experience which highlights the speed and precision of the Yaskawa hardware. The first iteration of the project was mainly focused on creating the physical hardware for the system and to begin the basic programming for the system. This phase of the project was focused on finalizing the physical hardware of the system, implementing the vision system and to continue the basic programing of the system AI. A third team will be assigned to …


Otto - The Wall Driving Platform, Cameron Venancio, Eric Mar, Kelvin Lei Dec 2013

Otto - The Wall Driving Platform, Cameron Venancio, Eric Mar, Kelvin Lei

Mechanical Engineering

A robotic wall-climbing robot.


Artificial Skin Tactile Sensor For Prosthetic And Robotic Applications, Ross James Miller Dec 2010

Artificial Skin Tactile Sensor For Prosthetic And Robotic Applications, Ross James Miller

Master's Theses

To solve the problem of limited tactile sensing in humanoid robotics as well as provide for future planned mechanical prostheses, an innovative tactile sensor system was created and embedded into two realistic-looking artificial skin gloves. These artificial skin tactile sensors used small piezoelectric ceramic disks to measure applied force at multiple points on each glove. The gloves were created using silicone rubber to simulate both the texture and look of human skin, while maintaining both flexibility and durability. The sensor outputs were buffered by high-impedance voltage-following operational amplifiers, and then read sequentially using a multiplexing scheme by a microcontroller. Sensor …