Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Engineering

Nonlinear Trajectory Tracking Control For Winged Evtol Uavs, Jacob Willis, Randal W. Beard Mar 2021

Nonlinear Trajectory Tracking Control For Winged Evtol Uavs, Jacob Willis, Randal W. Beard

Faculty Publications

Current control methods for winged eVTOL UAVs consider the vehicle primarily as a fixed-wing aircraft with the addition of vertical thrust used only during takeoff and landing. These methods provide good long-range flight handling but fail to consider the full dynamics of the vehicle for tracking complex trajectories. We present a trajectory tracking controller for the full dynamics of a winged eVTOL UAV in hover, fixed-wing, and partially transitioned flight scenarios. We show that in low- to moderate-speed flight, trajectory tracking can be achieved using a variety of pitch angles. In these conditions, the pitch of the vehicle is a …


Pitch And Thrust Allocation For Full-Flight-Regime Control Of Winged Evtol Uavs, Jacob B. Willis, Randal W. Beard Apr 2020

Pitch And Thrust Allocation For Full-Flight-Regime Control Of Winged Evtol Uavs, Jacob B. Willis, Randal W. Beard

Faculty Publications

Trajectory tracking control for winged eVTOL aircraft is complicated by the high-angle-of-attack aerodynamics experienced during navigational flight occurring immediately after takeoff and immediately before landing. The total energy use of the vehicle can be reduced and the control performance can be improved by appropriately considering the pitch angle of the vehicle in varying flight conditions. We present a review of high-angle-of-attack aerodynamic models as well as an algorithm for finding the optimal pitch and thrust of a winged eVTOL throughout its flight regime. We show simulation results demonstrating a 75% reduction in tracking error over our previous work while maintaining …


The Effect Of Communication And Vehicle Properties On The Search Performance Of A Swarm Of Unmanned Aerial Vehicles, Jenna E. Newcomb, Andrew Ning Jan 2019

The Effect Of Communication And Vehicle Properties On The Search Performance Of A Swarm Of Unmanned Aerial Vehicles, Jenna E. Newcomb, Andrew Ning

Faculty Publications

An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization to examine the effect vehicle properties had on search performance so the results can be applied to any domain size with any number and type of vehicle. We found that even if vehicles could only sense 10% of the grid area at any …


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Ronald Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Ronald Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy- optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain Sep 2017

Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain

Faculty Publications

This paper demonstrates a feasible method for using a deep neural network as a sensor to estimate the attitude of a flying vehicle using only flight video. A dataset of still images and associated gravity vectors was collected and used to perform supervised learning. The network builds on a previously trained network and was trained to be able to approximate the attitude of the camera with an average error of about 8 degrees. Flight test video was recorded and processed with a relatively simple visual odometry method. The aircraft attitude is then estimated with the visual odometry as the state …


Potential Benefits Of Combining Anomaly Detection With View Planning For Uav Infrastructure Modeling, R. Abraham Martin, Landen Blackburn, Joshua Pulsipher, Kevin W. Franke, John Hedengren May 2017

Potential Benefits Of Combining Anomaly Detection With View Planning For Uav Infrastructure Modeling, R. Abraham Martin, Landen Blackburn, Joshua Pulsipher, Kevin W. Franke, John Hedengren

Faculty Publications

This paper presents a novel method for UAV-based 3D modeling of large infrastructure objects, such as pipelines, canals and levees, that combines anomaly detection with automatic on-board 3D view planning. The study begins by assuming that anomaly detections are possible and focuses on quantifying the potential benefits of the combined method and the view planning algorithm. A simulated canal environment is constructed, and several simulated anomalies are created and marked. The algorithm is used to plan inspection flights for the anomaly locations, and simulated images from the flights are rendered and processed to construct 3D models of the locations of …


Evolutionary View Planning For Optimized Uav Terrain Modeling In A Simulated Environment, Ronald A. Martin, Ivan Rojas, Kevin W. Franke, John Hedengren Dec 2016

Evolutionary View Planning For Optimized Uav Terrain Modeling In A Simulated Environment, Ronald A. Martin, Ivan Rojas, Kevin W. Franke, John Hedengren

Faculty Publications

This work demonstrates the use of genetic algorithms in optimized view planning for 3D reconstruction applications using small unmanned aerial vehicles (UAVs). The quality of UAV site models is currently highly dependent on manual pilot operations or grid-based automation solutions. When applied to 3D structures, these approaches can result in gaps in the total coverage or inconsistency in final model resolution. Genetic algorithms can effectively explore the search space to locate image positions that produce high quality models in terms of coverage and accuracy. A fitness function is defined, and optimization parameters are selected through semi-exhaustive search. A novel simulation …


Comparison Of Sfm Computer Vision Point Clouds Of A Landslide Derived From Multiple Small Uav Platforms And Sensors To A Tls Based Model, Samantha Ruggles, Joseph Clark, Kevin W. Franke, Derek Wolfe, Brandon Reimschiissel, Ronald Abraham Martin, Trent Okeson, John Hedengren Jul 2016

Comparison Of Sfm Computer Vision Point Clouds Of A Landslide Derived From Multiple Small Uav Platforms And Sensors To A Tls Based Model, Samantha Ruggles, Joseph Clark, Kevin W. Franke, Derek Wolfe, Brandon Reimschiissel, Ronald Abraham Martin, Trent Okeson, John Hedengren

Faculty Publications

Structure from motion (SfM) computer vision is a remote sensing method that is gaining popularity due to its simplicity and ability to accurately characterize site geometry in three dimensions (3D). While many researchers have demonstrated the potential for SfM to be used with unmanned aerial vehicles (UAVs) to model in three dimensions various geologic features such as landslides, little is understood how the selection of the UAV platform can affect the resolution and accuracy of the model. This study evaluates the resolution and accuracy of 3D point cloud models of a large landslide that occurred in 2013 near Page, Arizona …


Rosflight: A Lightweight, Inexpensive Mav Research And Development Tool, Timothy Mclain, James Jackson, Gary J. Ellingson Jun 2016

Rosflight: A Lightweight, Inexpensive Mav Research And Development Tool, Timothy Mclain, James Jackson, Gary J. Ellingson

Faculty Publications

To accelerate research and development of the autonomous capabilities of micro aerial vehicles we have developed flight control framework, ROSflight, as a research tool. ROSflight makes development of autopilot code easier and more efficient by minimizing the use of embedded systems, incorporating the Robot Operating System and using off-the-shelf and open-source hardware and software. Motivation and applications for use in the research community are discussed. Analysis of loop rate and communication bandwidth are presented as well as results from flight demonstration of two multi-rotor aircraft.


The Application And Accuracy Of Structure From Motion Computer Vision Models With Full-Scale Geotechnical Field Tests, L. Palmer, Kevin W. Franke, R. Abraham Martin, B. E. Sines, Kyle M. Rollins, John Hedengren Jan 2015

The Application And Accuracy Of Structure From Motion Computer Vision Models With Full-Scale Geotechnical Field Tests, L. Palmer, Kevin W. Franke, R. Abraham Martin, B. E. Sines, Kyle M. Rollins, John Hedengren

Faculty Publications

Structure from motion (SfM) computer vision is a relatively new technology that allows engineers to reconstruct a three-dimensional (3D) model of a given scene using twodimensional digital photographs captured from a single, moving camera. SfM computer vision provides an economic and user-friendly alternative to other 3D scene-capture and modeling tools such as light distance and ranging (LiDAR). Although the resolution and accuracy of laser-based modeling methods are generally superior to vision-based modeling methods, the economic advantages associated with the latter may make it a useful and practical alternative for many geotechnical engineering applications. Although other engineering disciplines have investigated the …


Non-Redundant Sensor Fault Detection Using An Improved Dynamic Model, Brandon Cannon, Robert C. Leishman, Timothy W. Mclain, Joseph Jackson, Jovan Boskovic Aug 2013

Non-Redundant Sensor Fault Detection Using An Improved Dynamic Model, Brandon Cannon, Robert C. Leishman, Timothy W. Mclain, Joseph Jackson, Jovan Boskovic

Faculty Publications

This paper proposes a method of detecting faults in non-redundant sensors. Such a method is advantageous for small unmanned aerial vehicles (UAVs), which are prevented from carrying redundant sensors due to size, weight, and power constraints. The method we propose uses a multiplicative extended Kalman lter (MEKF) for estimation and employs hypothesis testing to detect faults. This method has been shown to detect bias, drift, and increased noise in a non-redundant sensor real-time on board an autonomous rotorcraft.


Robust Motion Estimation With Rgb-D Cameras, Robert C. Leishman, Daniel Koch, Timothy W. Mclain Aug 2013

Robust Motion Estimation With Rgb-D Cameras, Robert C. Leishman, Daniel Koch, Timothy W. Mclain

Faculty Publications

Estimating vehicle motion using vision sensors in real time has been greatly explored in the past few years due to speed improvements and advances in computer hardware. Six degree of freedom motion estimation using vision information is desirable due to a vision sensors low cost, low power requirements and light weight and for the quality of the solutions that can be obtained using few assumptions about the environment. However, cameras have the downside of not providing good estimates when visual features are sparse or not available. Also, there are problems with changes in lighting and when light is low or …


Energy Harvesting And Mission Effectiveness For Small Unmanned Air Vehicles, Mark J. Cutler, Timothy W. Mclain, Randal W. Beard, Brian Capozzi Aug 2010

Energy Harvesting And Mission Effectiveness For Small Unmanned Air Vehicles, Mark J. Cutler, Timothy W. Mclain, Randal W. Beard, Brian Capozzi

Faculty Publications

This paper explores the feasibility of improving unmanned air vehicle (UAV) mission effectiveness by extracting energy from the atmosphere. Specifically, we consider an aerial surveillance mission in the vicinity of a geographic ridge. Cross winds owing over the ridge produce regions of lift on the windward side that can be exploited to increase mission duration. Mission effectiveness is quantified using the seeability metric. Simulation results are presented for several observation target placements. Results indicate that seeability and imaging persistence can be improved by exploiting ridge lift. Simulations demonstrated that targets at ranges less than four times the ridge height were …


Performance Flight Testing Of Small Electric Powered Unmanned Aerial Vehicles, Jon N. Ostler, W. Jerry Bowman, Deryl O. Snyder, Timothy W. Mclain Sep 2009

Performance Flight Testing Of Small Electric Powered Unmanned Aerial Vehicles, Jon N. Ostler, W. Jerry Bowman, Deryl O. Snyder, Timothy W. Mclain

Faculty Publications

Flight testing methods are developed to find the drag polar for small unmanned aerial vehicles powered by electric motors with fixed-pitch propellers. Wind tunnel testing was used to characterize the propeller-motor efficiency. The drag polar was constructed using data from flight tests. This drag polar was then used to find the following performance parameters: maximum velocity, minimum velocity, velocity for maximum range, velocity for maximum endurance, maximum rate of climb, maximum climb angle, minimum turn radius, maximum turn rate, and maximum bank angle. The developed flight testing methods are used to characterize the performance of a small UAV.


Dynamics And Control Of Cable-Drogue System In Aerial Recovery Of Micro Air Vehicles Based On Gauss's Principle, Liang Sun, Randal W. Beard, Mark B. Colton, Timothy W. Mclain Jun 2009

Dynamics And Control Of Cable-Drogue System In Aerial Recovery Of Micro Air Vehicles Based On Gauss's Principle, Liang Sun, Randal W. Beard, Mark B. Colton, Timothy W. Mclain

Faculty Publications

This paper presents a new concept for aerial recovery of Micro Air Vehicles (ARMAVs) using a large mothership and a recovery drogue. The mothership drags a drogue attached to a cable and the drogue is controlled to match the flight patten of the MAV. This paper uses Gauss’s Principle to derive the dynamic model of the cable-drogue systems. A controllable drogue plays a key role in recovering MAVs in windy conditions. We develop a control approach for the drogue using its drag coefficient. Simulation results based on multilink cable-drogue systems present the feasibility of the aerial recovery concept and the …


Payload Directed Flight Of Miniature Air Vehicles, Randal W. Beard, Clark Taylor, Jeff Saunders, Ryan Holt, Timothy W. Mclain Apr 2009

Payload Directed Flight Of Miniature Air Vehicles, Randal W. Beard, Clark Taylor, Jeff Saunders, Ryan Holt, Timothy W. Mclain

Faculty Publications

This paper describes three applications of payload directed flight using miniature air vehicles: vision-based road following, vision-based target tracking, and vision-based mapping. A general overview of each application is given, followed by simulation and flight-test results. Results demonstrate the viability of utilizing electo-optical video imagery to directly control the air vehicle flight path to enhance performance relative to the sensing objective.


Decentralized Perimeter Surveillance Using A Team Of Uavs, Randal Beard, David Casbeer, Derek Kingston Dec 2008

Decentralized Perimeter Surveillance Using A Team Of Uavs, Randal Beard, David Casbeer, Derek Kingston

Faculty Publications

Sponsorship: NASA, AFOSR. This paper develops a distributed algorithm to maintain a current estimate of the state of the perimeter using a team of UAVs. Using notions of consensus, an algorithm is developed and shown to distribute a UAV team uniformly around the perimeter.


Aerobatic Maneuvering Of Miniature Air Vehicles Using Attitude Trajectories, James K. Hall, Timothy W. Mclain Aug 2008

Aerobatic Maneuvering Of Miniature Air Vehicles Using Attitude Trajectories, James K. Hall, Timothy W. Mclain

Faculty Publications

We develop aerobatic maneuvering for miniature air vehicles (MAVs) using time-parameterized attitude trajectory generation and an associated attitude tracking control law. We develop two methodologies, polynomial or trigonometric, for creating smooth functions that specify pitch and roll angle trajectories. For both approaches, the functions are constrained by the maneuver boundary conditions for aircraft position and velocity. We develop a feedback control law to regulate aircraft orientation throughout the maneuvers. The performance of our trajectory generation algorithm and our attitude tracking control law is demonstrated through simulated and actual flight tests of aerobatic maneuvers.


Experiments In Cooperative Timing For Miniature Air Vehicles, Derek R. Nelson, Timothy W. Mclain, Randal W. Beard Aug 2007

Experiments In Cooperative Timing For Miniature Air Vehicles, Derek R. Nelson, Timothy W. Mclain, Randal W. Beard

Faculty Publications

This paper presents experimental results for two cooperative timing missions carried out using a team of three miniature air vehicles (MAVs). Using a cooperative timing algorithm based on coordination functions and coordination variables, the MAV team executed a series of simultaneous arrival and cooperative fly-by missions. In the presence of significant wind disturbances, the average time difference between the first and last vehicle in the simultaneous arrival experiments was 1.6 s. For the cooperative fly-by experiments, the average timing error between vehicle arrivals was 0.6 s. These results demonstrate the practical feasibility of the cooperative timing approach.


Obstacle Avoidance Using Circular Paths, Timothy Mclain, Randal W. Beard, Jeffery Brian Saunders Aug 2007

Obstacle Avoidance Using Circular Paths, Timothy Mclain, Randal W. Beard, Jeffery Brian Saunders

Faculty Publications

This paper develops a method of obstacle avoidance for fixed-wing miniature air vehicles (MAV) using a series of circular oscillating paths and a single point laser ranger. The laser ranger is a low power, light-weight device used to report the distance to an object in a single direction of the body frame of a MAV. The oscillating paths allow the laser ranger to scan for obstacles and possible escape paths for the MAV in the case of obstacle detection. The circular paths are generated along waypoint paths and transition between waypoint paths without loss of scanning capabilities. Obstacle avoidance is …


Autonomous Landing Of Miniature Aerial Vehicles, D. Blake Barber, Stephen R. Griffiths, Timothy W. Mclain, Randal W. Beard May 2007

Autonomous Landing Of Miniature Aerial Vehicles, D. Blake Barber, Stephen R. Griffiths, Timothy W. Mclain, Randal W. Beard

Faculty Publications

This paper outlines an approach for automated landing of miniature aerial vehicles (MAVs). A landing algorithm defining the landing flight path as a function of height above ground, and the control strategies for following the path, are described. Two methods are presented for estimating height above ground, one based on barometric pressure measurements and the other utilizing optic-flow measurements. The development of an optic-flow sensor and associated sampling strategies are described. Utilizing estimates of height above ground from barometric pressure and optic-flow measurements, repeated landings were performed with a 1.5 m wingspan MAV. With height above ground estimated from barometric …


An Overview Of Mav Research At Brigham Young University, Timothy W. Mclain, Randal W. Beard, D. Blake Barber, Nathan B. Knoebel May 2007

An Overview Of Mav Research At Brigham Young University, Timothy W. Mclain, Randal W. Beard, D. Blake Barber, Nathan B. Knoebel

Faculty Publications

This paper summarizes research efforts at Brigham Young University related to the control of miniature aerial vehicles (MAVs). Recent results in the areas of vector field path following, precision landing and target prosecution, target localization, obstacle detection and avoidance, tailsitter aircraft control, and cooperative control are presented.


Probabilistic Searching Using A Small Unmanned Aerial Vehicle, Steven R. Hansen, Timothy W. Mclain, Michael A. Goodrich May 2007

Probabilistic Searching Using A Small Unmanned Aerial Vehicle, Steven R. Hansen, Timothy W. Mclain, Michael A. Goodrich

Faculty Publications

Ground breaking concepts in optimal search theory were developed during World War II by the U.S. Navy. These concepts use an assumed detection model to calculate a detection probability rate and an optimal search allocation. Although this theory is useful in determining when and where search effort should be applied, it offers little guidance for the planning of search paths. This paper explains how search theory can be applied to path planning for an SUAV with a fixed CCD camera. Three search strategies are developed: greedy search, contour search, and composite search. In addition, the concepts of search efficiency and …


Vision-Based Landing Of Fixed-Wing Miniature Air Vehicles, Blake Barber, Timothy Mclain, Barrett Edwards May 2007

Vision-Based Landing Of Fixed-Wing Miniature Air Vehicles, Blake Barber, Timothy Mclain, Barrett Edwards

Faculty Publications

This paper outlines a method for using vision-based feedback to accurately land a MAV on a visually identifiable target of approximately known location. The method presented is robust to wind, capable of handling both stationary and moving targets, and capable of cor- recting for camera misalignment, state estimation biases, and parameter estimation biases. Landing results from actual flight tests are presented which demonstrate the effectiveness of the proposed method.


Vision-Based Target Geo-Location Using A Fixed-Wing Miniature Air Vehicle, D. Blake Barber, Joshua D. Redding, Timothy W. Mclain, Randal W. Beard, Clark N. Taylor Dec 2006

Vision-Based Target Geo-Location Using A Fixed-Wing Miniature Air Vehicle, D. Blake Barber, Joshua D. Redding, Timothy W. Mclain, Randal W. Beard, Clark N. Taylor

Faculty Publications

This paper presents a method for determining the GPS location of a ground-based object when imaged from a fixed-wing miniature air vehicle (MAV). Using the pixel location of the target in an image, with measurements of MAV position and attitude, and camera pose angles, the target is localized in world coordinates. The main contribution of this paper is to present four techniques for reducing the localization error. In particular, we discuss RLS filtering, bias estimation, flight path selection, and wind estimation. The localization method has been implemented and flight tested on BYU’s MAV testbed and experimental results are presented demonstrating …


Maximizing Miniature Aerial Vehicles, Stephen Griffiths, Jeffery Brian Saunders, Andrew Curtis, Blake Barber, Timothy W. Mclain, Randal W. Beard Sep 2006

Maximizing Miniature Aerial Vehicles, Stephen Griffiths, Jeffery Brian Saunders, Andrew Curtis, Blake Barber, Timothy W. Mclain, Randal W. Beard

Faculty Publications

Despite the tremendous potential demonstrated by miniature aerial vehicles (MAV) in numerous applications, they are currently limited to operations in open air space, far away from obstacles and terrain. To broaden the range of applications for MAVs, methods to enable operation in environments of increased complexity must be developed. In this article, we presented two strategies for obstacle and terrain avoidance that provide a means for avoiding obstacles in the flight path and for staying centered in a winding corridor.


Random City Generator Technical Report, Brandon Call Jul 2006

Random City Generator Technical Report, Brandon Call

Faculty Publications

The Brigham Young University (BYU) Multiple Agent Intelligent Coordination and Control (MAGICC) research lab researchs many aspects of small unmanned air vehicles (UAV). To facilitate this research, students have created a UAV simulator called Aviones. In order to increase the capability of Aviones to simulate an urban environment, the ability to draw buildings, streets and vehicles have been added. This document outlines how cities are created and how a researcher can use them in conjunction with Aviones.


Vision-Based Target Localization From A Fixed-Wing Miniature Air Vehicle, Joshua D. Redding, Timothy W. Mclain, Randal W. Beard, Clark N. Taylor Jun 2006

Vision-Based Target Localization From A Fixed-Wing Miniature Air Vehicle, Joshua D. Redding, Timothy W. Mclain, Randal W. Beard, Clark N. Taylor

Faculty Publications

This paper presents a method for localizing a ground-based object when imaged from a small fixed-wing unmanned aerial vehicle (UAV). Using the pixel location of the target in an image, with measurements of UAV position and attitude, and camera pose angles, the target is localized in world coordinates. This paper presents a study of possible error sources and localization sensitivities to each source. The localization method has been implemented and experimental results are presented demonstrating the localization of a target to within 11 m of its known location.


Vector Field Path Following For Small Unmanned Aerial Vehicles, Derek R. Nelson, D. Blake Barber, Timothy W. Mclain, Randal W. Beard Jun 2006

Vector Field Path Following For Small Unmanned Aerial Vehicles, Derek R. Nelson, D. Blake Barber, Timothy W. Mclain, Randal W. Beard

Faculty Publications

This paper presents a new method for unmanned aerial vehicle path following using vector fields to represent desired ground track headings to direct the vehicle onto the desired path. The key feature of this approach is that ground track heading error and lateral following error approach zero asymptotically even in the presence of constant wind disturbances. Methods for following straight-line and circularorbit paths, as well as combinations of straight lines and arcs, are presented. Experimental results validate the effectiveness of this path following approach for small air vehicles flying in high-wind conditions.