Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Effects Of Prior Aging At 274⁰C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 288⁰C: Experiment And Modeling, Joseph A. Wahlquist Dec 2010

Effects Of Prior Aging At 274⁰C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 288⁰C: Experiment And Modeling, Joseph A. Wahlquist

Theses and Dissertations

No abstract provided.


Mechanical Properties Characterization And Business Case Analysis Of The Fiber Metal Laminate Glare-3 For Use As Secondary Aircraft Structure, Benjamin O. Elton Mar 2010

Mechanical Properties Characterization And Business Case Analysis Of The Fiber Metal Laminate Glare-3 For Use As Secondary Aircraft Structure, Benjamin O. Elton

Theses and Dissertations

This effort explored the mechanical characteristics and economic feasibility of using the fiber metal laminate, GLARE-3, as a secondary aircraft structure; specifically, the cargo floor of a C-130. The mechanical properties were determined through static four-point bending and tensile testing and dynamic impact testing. Aggregate behavior of the constituent materials was predicted using a model which consisted of Mass Volume Fraction (MVF) and Classical Laminated Plate Theory (CLPT) methods using known values for the constituents. Static testing was conducted on coupon-level specimens using standardized testing procedures. Static tensile tests were conducted on specimens with four different fiber orientations, 0°, 22.5°, …


Development Of A Flapping Wing Design Incorporating Shape Memory Alloy Actuation, Jeffrey A. Barrett Mar 2010

Development Of A Flapping Wing Design Incorporating Shape Memory Alloy Actuation, Jeffrey A. Barrett

Theses and Dissertations

This research sought to validate a proof of concept regarding shape memory alloy actuation of a flapping-wing blimp. Specimen wires were subjected to cyclic voltage at increasing frequencies to quantify expected strains. A laser vibrometer captured 2048 sample velocities during single contraction and elongation cycles, and the resulting samples were used to calculate displacements. Displacements were determined ten times for each specimen and frequency to compute averages. Subsequently, a circumventing frame was designed to encase a blimp envelope and provide support for a flapping motion actuation system. Contraction of shape memory wire translated force to the flapping mechanism via bellcranks, …


Experiments With Geometric Non-Linear Coupling For Analytical Validation, Jonathan D. Boston Mar 2010

Experiments With Geometric Non-Linear Coupling For Analytical Validation, Jonathan D. Boston

Theses and Dissertations

This study was focused on obtaining accurate experimental data for the validation of the geometrically exact beam theory from a series of experiments in which high quality surface shape and deflection data was collected. Many previous experiments have experienced issues with data collection or test articles which the researchers were unable to overcome. The test program was performed in two stages: qualification and joined-wing. The qualification stage validated the experimental procedures on simple 72 in long aluminum beams with 8 in x 0.5 in cross-sections. The joined-wing stage was the primary experiment focused on obtaining quality data for use in …


Consideration Of Wear Rates At High Velocities, Stephen P. Meador Mar 2010

Consideration Of Wear Rates At High Velocities, Stephen P. Meador

Theses and Dissertations

The goal of this research is to study sliding contact wear of test sled slippers at high velocities. Experimentation representative of the slippers is infeasible, so numerical studies are used. An Eulerian-Lagrangian hydrocode called CTH is used to study mechanical wear. Failure criteria have been established to evaluate the stresses and strains resulting from the hydrocode simulation of a single asperity collision. The results from the hydrocode simulations are scaled to account for slipper bounce and multiple asperities, and these results produce total wear values that are approximately 90% of total experimental wear. Slipper thermodynamics have also been evaluated. The …


Investigation Of A Novel Compact Vibration Isolation System For Space Applications, Steven D. Miller Mar 2010

Investigation Of A Novel Compact Vibration Isolation System For Space Applications, Steven D. Miller

Theses and Dissertations

A novel compact vibration isolation system was designed, built, and tested for the Space Chromotomography Experiment (CTEx) being built by Air Force Institute of Technology (AFIT) researchers. CTEx is a multifunctional experimental imaging chromotomographic spectrometer designed for flight on the International Space Station (ISS) and is sensitive to jitter caused by vibrations both through the support structure as well as those produced on the optical platform by rotating optical components. CTEx demands a compact and lightweight means of vibration isolation and suppression from the ISS structure. Vibration tests conducted on an initial isolator design resulted in changes in the chosen …


Part Count: Monolithic Part Effects On Manufacturing Labor Cost, An Aircraft Applied Model, Aaron M. Lemke Mar 2010

Part Count: Monolithic Part Effects On Manufacturing Labor Cost, An Aircraft Applied Model, Aaron M. Lemke

Theses and Dissertations

There are significantly different manufacturing processes and part counts associated with composites that are not currently addressed within the aircraft procurement and life cycle management processes in the Department of Defense (DoD). A series of affordability initiatives have culminated in significant evidence over the last decade to better quantify the impact of primarily composite structures in aircraft. An Air Force Research Laboratory program, Advanced Composite Cargo Aircraft (ACCA), provides substantial support for the impact of part size on life cycle cost for payload aircraft. This research evaluates select methods used and seeks to introduce modifications to the projected manufacturing hours …


Consideration Of Wear Rates At High Velocity, Chad S. Hale Mar 2010

Consideration Of Wear Rates At High Velocity, Chad S. Hale

Theses and Dissertations

The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were considered for the determination of high velocity wear rates. The numerical model, based on a metallographic study of a test slipper, contained all of the physical features present in order to adequately characterize high velocity wear rates. Two-dimensional, plane strain models have been implemented in the explicit finite element code, ABAQUS. …


Effectsof Prior Aging At 260 °C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 260 °C: Experiment And Modeling, Bradley K. Diedrick Mar 2010

Effectsof Prior Aging At 260 °C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 260 °C: Experiment And Modeling, Bradley K. Diedrick

Theses and Dissertations

The purpose of this research was to investigate the inelastic deformation behavior of PMR-15 neat resin, a high-temperature polymer, at 260 °C. The experimental program was designed to explore the influence of strain rate on loading and unloading behaviors. In addition, the effect of prior strain rate on creep, relaxation, and recovery responses was evaluated. The material exhibits positive, nonlinear strain rate sensitivity in monotonic loading. Early failures occur before fully establishing inelastic flow. The creep, relaxation, and recovery responses are significantly influenced by prior strain rate. The experimental results suggest the behavior of PMR-15 at 260 °C can be …


Fatigue Behavior Of An Advanced Sic/Sic Composite With An Oxidation Inhibited Matrix At 1200°C In Air And In Steam, Jacob Delapasse Mar 2010

Fatigue Behavior Of An Advanced Sic/Sic Composite With An Oxidation Inhibited Matrix At 1200°C In Air And In Steam, Jacob Delapasse

Theses and Dissertations

The fatigue behavior of an advanced Silicon Carbide/Silicon Carbide (SiC/SiC) ceramic matrix composite (CMC) with oxidation inhibited matrix was investigated at 1200˚C in laboratory air and in steam environments. The composite consisted of an oxidation inhibited SiC matrix reinforced with Hi-Nicalon fibers coated with pyrolytic carbon (PyC) with a boron carbide overlay woven into eight-harness-satin (8HS) weave plies. Tensile stress-strain behavior and tensile properties were evaluated at 1200˚C. Tension-tension fatigue tests were conducted in both laboratory air and in steam at 1200˚C at frequencies of 0.1 Hz, 1.0 Hz, and 10 Hz. The tension-tension fatigue tests had a ratio of …