Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Electroluminescence Studies On Longwavelength Indium Arsenide Quantum Dot Microcavities Grown On Gallium Arsenide, John C. Ramsey Dec 2011

Electroluminescence Studies On Longwavelength Indium Arsenide Quantum Dot Microcavities Grown On Gallium Arsenide, John C. Ramsey

Theses and Dissertations

A comprehensive study of the electroluminescence of four GaAs/AlGaAs microcavity devices with InAs/GaInAs quantum dot active regions emitting near 1.3 µm was conducted. The four molecular beam epitaxial grown samples with AlAs oxide aperture confinement layers were fabricated, characterized, and optically modeled. Optical power transmission of the samples was modeled using Matlab and compared with measured transmission data. Resonant cavity light emitting diodes (RCLEDs) and three vertical cavity surface emitting laser (VCSEL) samples were fabricated and electro-optically characterized over a range of injection currents and temperatures. Devices achieved continuous wave room temperature lasing at 1.28 µm with an output power …


Integrated Approach To Free Space Optical Communications In Strong Turbulence, Jason A. Tellez Sep 2011

Integrated Approach To Free Space Optical Communications In Strong Turbulence, Jason A. Tellez

Theses and Dissertations

The propagation of a free space optical communication signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades which negatively impact the communications link performance. This research develops an analytical probability density function (PDF) to model the best case scenario of using multiple independent beams to reduce the intensity fluctuations. The PDF was further developed to account for partially correlated beams, such as would be experienced by beams having finite separation. The PDF was validated with results obtained from digital simulations as well as lab experiments. The research showed that as the number of transmitted beams increases the …


Distributed Spacing Stochastic Feature Selection And Its Application To Textile Classification, Jeffrey D. Clark Sep 2011

Distributed Spacing Stochastic Feature Selection And Its Application To Textile Classification, Jeffrey D. Clark

Theses and Dissertations

Many situations require the need to quickly and accurately locate dismounted individuals in a variety of environments. In conjunction with other dismount detection techniques, being able to detect and classify clothing (textiles) provides a more comprehensive and complete dismount characterization capability. Because textile classification depends on distinguishing between different material types, hyperspectral data, which consists of several hundred spectral channels sampled from a continuous electromagnetic spectrum, is used as a data source. However, a hyperspectral image generates vast amounts of information and can be computationally intractable to analyze. A primary means to reduce the computational complexity is to use feature …


Optical Flow-Based Odometry For Underground Tunnel Exploration, Terra Kier Jun 2011

Optical Flow-Based Odometry For Underground Tunnel Exploration, Terra Kier

Theses and Dissertations

As military operations in degraded or GPS-denied environments continue to increase in frequency and importance, there is an increased necessity to be able to determine precision location within these environments. Furthermore, authorities are finding a record number of tunnels along the U.S.-Mexico border; therefore, underground tunnel characterization is becoming a high priority for U.S. Homeland Security as well. This thesis investigates the performance of a new image registration technique based on a two camera optical- flow configuration using phase correlation techniques. These techniques differ from other image based navigation methods but present a viable alternative increasing autonomy and answering the …


Ir Nonlinear Absorption Leading To Laser-Induced Damage In Ge & Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha Jun 2011

Ir Nonlinear Absorption Leading To Laser-Induced Damage In Ge & Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha

Faculty Publications

Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 μm for the first time. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 μm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for ps or ns pulses, respectively. Wavelength-dependant …


Complementary Metal-Oxide Semiconductor-Compatible Detector Materials With Enhanced 1550 Nm Responsivity Via Sn-Doping Of Ge/Si(100), Richard T. Beeler, Jay Mathews, Mee-Yi Ryu, Yung-Kee Yeo, Jose Menendez, John Kouvetakis May 2011

Complementary Metal-Oxide Semiconductor-Compatible Detector Materials With Enhanced 1550 Nm Responsivity Via Sn-Doping Of Ge/Si(100), Richard T. Beeler, Jay Mathews, Mee-Yi Ryu, Yung-Kee Yeo, Jose Menendez, John Kouvetakis

Faculty Publications

Previously developed methods used to grow Ge1−ySny alloys on Si are extended to Sn concentrations in the 1019−1020 cm−3 range. These concentrations are shown to be sufficient to engineer large increases in the responsivity of detectors operating at 1550 nm. The dopant levels of Sn are incorporated at temperatures in the 370–390 °C range, yielding atomically smooth layers devoid of threading defects at high growth rates of 15–30 nm/min. These conditions are far more compatible with complementary metal-oxide semiconductor processing than the high growth and processing temperatures required to achieve the same …


Oxygen Vacancies Adjacent To Cu(2+) Ions In Tio(2) (Rutile) Crystals, A. T. Brant, Shan Yang (杨山), Nancy C. Giles, Zafar Iqbal, A. Manivannan, Larry E. Halliburton Apr 2011

Oxygen Vacancies Adjacent To Cu(2+) Ions In Tio(2) (Rutile) Crystals, A. T. Brant, Shan Yang (杨山), Nancy C. Giles, Zafar Iqbal, A. Manivannan, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize Cu2+ ions substituting for Ti4+ ions in nominally undoped TiO2 crystals having the rutile structure. Illumination at 25 K with 442 nm laser light reduces the concentration of Cu2+ ions by more than a factor of 2. The laser light also reduces the EPR signals from Fe3+ and Cr3+ ions and introduces signals from Ti3+ ions. Warming in the dark to room temperature restores the crystal to its preilluminated state. Monitoring the recovery of the photoinduced changes in the Cu …


Optical Metamaterial Design, Fabrication And Test, Jack P. Lombardi Mar 2011

Optical Metamaterial Design, Fabrication And Test, Jack P. Lombardi

Theses and Dissertations

Metamaterials, materials that make use of naturally occurring materials and designed structures to create materials with special properties not found in nature, are a fascinating new area of research, combining the fields of physics, microfabrication, and material science. This work will focus on the development of metamaterials operating in the visible and infrared which will be constructed and tested for basic optical properties. Possible applications for these materials will not be investigated. The this work will go into the fabrication and test of layered metal-dielectric structures, called layered metamaterials, as these structures hold potential for applications in advanced optical systems. …


An Analytical Model Of Nanometer Scale Viscoelastic Properties Of Polymer Surfaces Measured Using An Atomic Force Microscope, Jacob B. Goldberg Mar 2011

An Analytical Model Of Nanometer Scale Viscoelastic Properties Of Polymer Surfaces Measured Using An Atomic Force Microscope, Jacob B. Goldberg

Theses and Dissertations

The United States Air Force and the Department of Defense is increasingly interested in nanomaterials. To study these materials, one needs to measure the mechanics of materials on the nanoscale. Over the past few decades the atomic force microscope (AFM) has been used in various methods to establish local surface properties at the nanoscale. In particular, surface elasticity measurements are crucial to understanding nanoscale surface properties. Problems arise, however, when measuring soft surfaces such as polymers and biological specimens, because these materials have a more complex viscoelastic response. This research focuses on modeling an AFM dynamic nanoindentation experiment intended to …


Polarimetric Enhancements To Electro-Optical Aided Navigation Techniques, Jeremiah D. Johnson Mar 2011

Polarimetric Enhancements To Electro-Optical Aided Navigation Techniques, Jeremiah D. Johnson

Theses and Dissertations

Navigation in indoor and urban environments by small unmanned systems is a topic of interest for the Air Force. The Advanced Navigation Technology Center at the Air Force Institute of Technology is continually looking for novel approaches to navigation in GPS deprived environments. Inertial sensors have been coupled with image aided concepts, such as feature tracking, with good results. However, feature density in areas with large, flat, smooth surfaces tends to be low. Polarimetric sensors have been used for surface reconstruction, surface characterization and outdoor navigation. This thesis combines aspects of some of these algorithms along with a realistic, micro-facet …