Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Cardiac Organoid Technology And Computational Processing Of Cardiac Physiology For Advanced Drug Screening Applications, Plansky Hoang Dec 2020

Cardiac Organoid Technology And Computational Processing Of Cardiac Physiology For Advanced Drug Screening Applications, Plansky Hoang

Dissertations - ALL

Stem cell technology has gained considerable recognition since its inception to advance disease modeling and drug screening. This is especially true for tissues that are difficult to study due to tissue sensitivity and limited regenerative capacity, such as the heart. Previous work in stem cell-derived cardiac tissue has exploited how we can engineer biologically functional heart tissue by providing the appropriate external stimuli to facilitate tissue development. The goal of this dissertation is to explore the potentials of stem cell cardiac organoid models to recapitulate heart development and implement analytical computational tools to study cardiac physiology. These new tools were …


Development Of Water-Soluble Polyesters For Tissue Engineering Applications, Trent Gordon Nov 2020

Development Of Water-Soluble Polyesters For Tissue Engineering Applications, Trent Gordon

Electronic Thesis and Dissertation Repository

The development of tunable polymers has become increasingly important for both tissue engineering and drug delivery. This thesis investigates the development of water-soluble polyesters that contain both natural and synthetic components. These polymers offer tunable chemical structures, as well as functional groups for the conjugation of crosslinking moieties or cell signaling molecules. The first series of polymers was synthesized from poly(ethylene glycol) (PEG) and aspartic acid (Asp) via a titanium catalyzed transesterification method to provide polymers with molar masses of 12 kg/mol. After deprotection, the pendent functional groups of Asp were reacted with methacrylic, maleic, and itaconic anhydride to introduce …


Mechanical Characterization Of Animal Derived Starting Materials For Tissue Engineering, Bin Zhang May 2020

Mechanical Characterization Of Animal Derived Starting Materials For Tissue Engineering, Bin Zhang

Dissertations

Animal derived starting materials are well established in the production of Tissue Engineered Medical Devices. Porcine specifically can be found in products ranging in application from hernia repair to breast reconstruction. Although this material has been largely accepted in the Tissue Engineering industry, little is known of its material properties and mechanical characteristics. A review of the scientific literature describes limited mechanical measures only on uncontrolled research grade material. The objective of this work is to mechanically characterize porcine starting material used in the medical device industry. Porcine skin is provided by Midwest Research Swine, LLC (MRS) an established supplier …


Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin Feb 2020

Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin

Electronic Thesis and Dissertation Repository

Human decellularized adipose tissue (DAT) represents a promising extracellular matrix (ECM) source for the development of biomaterials, with its properties conductive of angiogenesis, adipogenesis, and scaffold remodelling. This thesis sought to provide new fundamental insight into the design of ECM-derived bioscaffolds by developing novel modular biomaterials for soft connective tissue regeneration and by studying the effects of ECM composition on cell function and fate.

Initial studies explored the effects of ECM composition of pre-assembled bead foams derived from DAT or commercially-sourced bovine collagen (COL) on human wound edge dermal fibroblasts (weDFs) sourced from chronic wounds. In vitro testing under conditions …


Bioadhesive Hydrogel Composite Cell Carrier For The Repair Of The Degenerated Intervertebral Disc, Thomas Richard Christiani Jan 2020

Bioadhesive Hydrogel Composite Cell Carrier For The Repair Of The Degenerated Intervertebral Disc, Thomas Richard Christiani

Theses and Dissertations

Lower back pain (LBP) affects the worldwide population and can be attributed to the degeneration of the intervertebral disc (IVD). The IVD is composed of a central nucleus pulposus (NP), a peripheral annulus fibrosus (AF), and adjacent cartilage endplates (CEPs). IVD degeneration is characterized by proteoglycan loss, tissue dehydration, and decreased hydrostatic pressure. In this work, the use of an injectable bioadhesive hydrogel composite for replacement of the degenerated NP was investigated.

Results indicate that the composite exhibits similar mechanical properties to the NP, adheres to AF tissue, and supports encapsulated mesenchymal stem cell (MSC) differentiation toward an NP-like phenotype …


3d Printing Of Multilayered Scaffolds For Rotator Cuff Tendon Regeneration, Xiping Jiang, Shaohua Wu, Mitchell Kuss, Yunfan Kong, Wen Shi, Philipp N. Streubel, Tieshi Li, Bin Duan Jan 2020

3d Printing Of Multilayered Scaffolds For Rotator Cuff Tendon Regeneration, Xiping Jiang, Shaohua Wu, Mitchell Kuss, Yunfan Kong, Wen Shi, Philipp N. Streubel, Tieshi Li, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Repairing massive rotator cuff tendon defects remains a challenge due to the high retear rate after surgical intervention. 3D printing has emerged as a promising technique that enables the fabrication of engineered tissues with heterogeneous structures and mechanical properties, as well as controllable microenvironments for tendon regeneration. In this study, we developed a new strategy for rotator cuff tendon repair by combining a 3D printed scaffold of polylactic-co-glycolic acid (PLGA) with cell-laden collagen-fibrin hydrogels. We designed and fabricated two types of scaffolds: one featuring a separate layer-by-layer structure and another with a tri-layered structure as a whole. Uniaxial tensile tests …


Quest Towards The Development Of Human Cardiac Tissue Equivalents Made From Human Induced Pluripotent Stem Cell Derived Cardiac Cells, Wesley Labarge Jan 2020

Quest Towards The Development Of Human Cardiac Tissue Equivalents Made From Human Induced Pluripotent Stem Cell Derived Cardiac Cells, Wesley Labarge

All ETDs from UAB

The human heart is one of the more complex organs in the body to study and understand given the structural and functional characteristics it possesses. These characteristics work in synchrony to transfer oxygen-rich blood to vital organs throughout the body and oxygen-deficient blood back to the lungs for oxygenation. Furthermore, it can be reasoned that when these complexities are compounded with disease states which negatively affect the structure and function of the heart, determining the best treatments while also limiting adverse side effects becomes increasingly more challenging. While the goal of having patient-specific therapies has not completely been realized, the …