Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Investigation Of Oxygen Reduction Reaction In Carbon-Based Electrocatalysts, Andrew Mason Oct 2019

Investigation Of Oxygen Reduction Reaction In Carbon-Based Electrocatalysts, Andrew Mason

Honors Theses

In the modern era, some global challenges are energy storage conversion. To find sustainable solutions to this problem, researchers have turned to renewable energy resources. An example of promising energy generation devices is fuel cell. Fuel cells are electrochemical systems that convert the chemical energy of the fuel to electrochemical potential that can be used as direct current (dc) generators. Although these technologies are very attractive, they are known to be expensive due to high cost of catalysts and concerns regarding their energy densities. Fuel cells composed of two electrodes, namely cathode and anode and electrolyte separating the oxidizing agents …


A Comparative Study Of Pre-Lithiated Hard Carbon And Soft Carbon As Anodes For Lithium-Ion Capacitors, Zhao Li, Xian-Zhong Sun, Wen-Jie Liu, Xiong Zhang, Kai Wang, Yan-Wei Ma Feb 2019

A Comparative Study Of Pre-Lithiated Hard Carbon And Soft Carbon As Anodes For Lithium-Ion Capacitors, Zhao Li, Xian-Zhong Sun, Wen-Jie Liu, Xiong Zhang, Kai Wang, Yan-Wei Ma

Journal of Electrochemistry

Lithium-ion capacitor (LIC) has emerged to be one of the most promising electrochemical energy storage devices. Presently, activated carbon (AC) is the mostly used cathode material for LIC. Nevertheless, various carbonaceous materials can be used as anode materials, such as hard carbon (HC) and soft carbon (SC). Therefore, HC and SC with different structural and electrochemical characteristics have been investigated as the anode materials of LICs in this work. Compared with the HC electrode, the SC electrode showed higher electronic conductivity and reversible capacity. The rate capabilities of the two carbonaceous materials as a function of coating thickness have been …


Metallic State Two-Dimensional Holey-Structured Co3fen Nanosheets As Stable And Bifunctional Electrocatalysts For Zinc–Air Batteries, Haipeng Guo, Xuanwen Gao, Nengfei Yu, Zhi Zheng, Wenbin Luo, Chang Wu, Hua-Kun Liu, Jiazhao Wang Jan 2019

Metallic State Two-Dimensional Holey-Structured Co3fen Nanosheets As Stable And Bifunctional Electrocatalysts For Zinc–Air Batteries, Haipeng Guo, Xuanwen Gao, Nengfei Yu, Zhi Zheng, Wenbin Luo, Chang Wu, Hua-Kun Liu, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Exploring economically efficient electrocatalysts with robust bifunctional oxygen conversion catalytic activity and designing appropriate structures are essential to realize ideal zinc-Air batteries with high energy density and long lifespan. Two-dimensional metallic state Co3FeN nanosheets with a holey-structured architecture are designed and shown to exhibit enhanced catalytic properties owing to the complete exposure of the atoms in the large lateral surfaces and in the edges of pore areas, together with the lowest OH∗ adsorption energy on exposed surfaces due to bimetallic synergistic effects. Meanwhile, this porous architecture can not only accelerate electron transportation by its metallic state highly oriented crystallized structure, …


General Π-Electron-Assisted Strategy For Single-Atom (Ir, Pt, Ru, Pd, Fe, And Ni) Electrocatalysts With Bi-Functional Active Sites Toward Highly Efficient Water Splitting, Weihong Lai, Li-Fu Zhang, Wei-Bo Hua, Sylvio Indris, Zichao Yan, Zhe Hu, Binwei Zhang, Yani Liu, Li Wang, Min Liu, Rong Liu, Yunxiao Wang, Jiazhao Wang, Zhenpeng Hu, Hua-Kun Liu, Shulei Chou, Shi Xue Dou Jan 2019

General Π-Electron-Assisted Strategy For Single-Atom (Ir, Pt, Ru, Pd, Fe, And Ni) Electrocatalysts With Bi-Functional Active Sites Toward Highly Efficient Water Splitting, Weihong Lai, Li-Fu Zhang, Wei-Bo Hua, Sylvio Indris, Zichao Yan, Zhe Hu, Binwei Zhang, Yani Liu, Li Wang, Min Liu, Rong Liu, Yunxiao Wang, Jiazhao Wang, Zhenpeng Hu, Hua-Kun Liu, Shulei Chou, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general pelectron- assisted strategy to anchor single-atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The Matoms can simultaneously anchor on two distinct domains of the hybrid support, four-fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water-splitting performance, showing a low applied potential of 1.603V to achieve 10 mAcm@2 …