Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Single And Double Heterojunction Nanorods For Optoelectronics, Moonsub Shim Nov 2015

Single And Double Heterojunction Nanorods For Optoelectronics, Moonsub Shim

Composites at Lake Louise (CALL 2015)

Understanding charge separation and recombination processes and developing materials that can efficiently direct charge carriers with nanoscale precision are of fundamental importance in advancing next-generation electronics, optoelectronics and energy technologies. As semiconductor heterostructures have enabled today’s electronics and optoelectronics, the introduction of active heterojunctions can impart new and improved capabilities that will facilitate integration of colloidal quantum dots into high performance devices. With anisotropic shapes that can be exploited for assembly, charge carrier manipulation and optical anisotropy, incorporating heterojunctions in colloidal semiconductor nanorods presents a promising direction. Various motifs of epitaxial heterojunctions introduced in nanorods through solution chemistry will be …


Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky Mar 2015

Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky

Jason R. Hattrick-Simpers

We have fabricated a series of composition spreads consisting of ferroelectric BaTiO3 and piezomagnetic CoFe2O4 layers of varying thicknesses modulated at nanometer level in order to explore artificial magnetoelectricthin-film heterostructures. Scanning microwavemicroscopy and scanning superconducting quantum interference device microscopy were used to map the dielectric and magnetic properties as a function of continuously changing average composition across the spreads, respectively. Compositions in the middle of the spreads were found to exhibit ferromagnetism while displaying a dielectric constant as high as ≈120.


Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska Feb 2015

Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska

Grigory Simin

We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices.


Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu Feb 2015

Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu

Grigory Simin

We report on AlGaN/GaN heterostructures and heterostructurefield-effect transistors(HFETs) fabricated on high-pressure-grown bulk GaN substrates. The 2delectron gas channel exhibits excellent electronic properties with room-temperature electron Hall mobility as high as μ=1650 cm2/V s combined with a very large electron sheet density ns≈1.4×1013 cm−2.The HFET devices demonstrated better linearity of transconductance and low gate leakage, especially at elevated temperatures. We also present the comparative study of high-current AlGaN/GaN HFETs(nsμ>2×1016 V−1 s−1) grown on bulk GaN, sapphire, and SiC substrates under the same conditions. We demonstrate that in …


Accumulation Hole Layer In P-Gan/Algan Heterostructures, M. S. Shur, A. D. Bykhovski, R. Gaska, J. W. Yang, Grigory Simin, M. A. Khan Feb 2015

Accumulation Hole Layer In P-Gan/Algan Heterostructures, M. S. Shur, A. D. Bykhovski, R. Gaska, J. W. Yang, Grigory Simin, M. A. Khan

Grigory Simin

We present the results on piezoelectric and pyroelectricdoping in AlGaN-on-GaN and GaN-on-AlGaN heterostructures and demonstrate p-GaN/AlGaN structures with accumulation hole layer. Our results indicate that polarization charge can induce up to 5×1013 cm−2 holes at the AlGaN/GaN heterointerfaces. We show that the transition from three-dimensional (3D) to two-dimensional (2D) hole gas can be only achieved for hole sheet densities on the order of 1013 cm−2 or higher. At lower densities, only 3D-hole accumulation layer may exist. These results suggest that a piezoelectrically induced 2D-hole gas can be used for the reduction of the base spreading resistance …


Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur Feb 2015

Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur

Grigory Simin

The real-space transfer effect in a SiO2∕AlGaN∕GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C‐V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to …


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Feb 2015

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Grigory Simin

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 °Cwith excellent …


Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Feb 2015

Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Grigory Simin

Gated transmission line model pattern measurements of the transient current–voltage characteristics of AlGaN/GaN heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs were made to develop a phenomenological model for current collapse. Our measurements show that, under pulsed gate bias, the current collapse results from increased source–gate and gate–drain resistances but not from the channel resistance under the gate. We propose a model linking this increase in series resistances (and, therefore, the current collapse) to a decrease in piezoelectriccharge resulting from the gate bias-induced nonuniform strain in the AlGaN barrier layer.


Graphene Based Heterojunctions For Nano-Electronic And Sensing Applications, Md A. Uddin Jan 2015

Graphene Based Heterojunctions For Nano-Electronic And Sensing Applications, Md A. Uddin

Theses and Dissertations

Graphene, an atomically thin and semi-metallic two dimensional material, has been extensively researched over the past decade due to its superior intrinsic carrier velocity, electrical and chemically tunable work function, ability to form layered heterostructure with other materials, and relevant potential applications in electronics, sensing, optoelectronics, energy storage, etc. However, the confinement of charge carriers within one atomic layer results in an electrical transport that is extremely sensitive to the surrounding environment, which is beneficial for sensing applications, but at times unfavorable for electronic applications due to scattering from extrinsic impurities. In addition, due to its rather delicate structure, engineering …