Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

1993

Biomedical Engineering and Bioengineering

Mineralization

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Analysis Of The Bony Interface With Various Types Of Hydroxyapatite In Vitro, J. D. De Bruijn, J. S. Flach, K. De Groot, C. A. Van Blitterswijk, J. E. Davies Jan 1993

Analysis Of The Bony Interface With Various Types Of Hydroxyapatite In Vitro, J. D. De Bruijn, J. S. Flach, K. De Groot, C. A. Van Blitterswijk, J. E. Davies

Cells and Materials

Rat bone marrow cells, capable of forming bonelike tissue, were cultured on three types of plasma sprayed hydroxyapatite that differed in degree of crystallinity from 15%, 43% to 69%. The interface between the mineralized extracellular matrix and the hydroxyapatite was studied with scanning and transmission electron microscopy. At the onset of bone formation, calcium and phosphorous-rich afibrillar globules, with a diameter varying from 0.2 to 0.8 μm, were produced and deposited onto the different substrata. These globules subsequently fused to form a homogeneous layer to which collagen fibres became anchored. Individual globules could be distinguished on the non-degrading 69 % …


Mineralization Of An Axially Aligned Collagenous Matrix: A Morphological Study, D. L. Christiansen, F. H. Silver Jan 1993

Mineralization Of An Axially Aligned Collagenous Matrix: A Morphological Study, D. L. Christiansen, F. H. Silver

Cells and Materials

Bone can be described as a highly ordered composite of type I collagen integrated with an inorganic mineral phase. In vitro models of bone mineralization using collagenous substrates have been reported in the literature. This study reports an in vitro system of mineralized reconstituted collagen fibers, with aligned fibrillar substructure. The collagen fibers were mineralized in a double diffusion chamber saturated with respect to calcium and phosphate. The morphology and ultrastructure of the mineral precipitate were evaluated as a function of the pH of the incubating media. Brushite crystal was observed at acidic pH. Large rectangular crystals formed at pH …


Influence Of Crystal Structure On The Establishment Of The Bone-Calcium Phosphate Interface In Vitro, J. D. De Bruijn, C. P. A. T. Klein, K. De Groot, C. A. Van Blitterswijk Jan 1993

Influence Of Crystal Structure On The Establishment Of The Bone-Calcium Phosphate Interface In Vitro, J. D. De Bruijn, C. P. A. T. Klein, K. De Groot, C. A. Van Blitterswijk

Cells and Materials

An in vitro rat bone marrow cell system was used to examine the interfacial ultrastructure established between various calcium phosphates and mineralized tissue. The investigated calcium phosphates comprised hydroxyapatite (HA), fluorapatite (FA), tricalcium phosphate (TCP), tetracalcium phosphate (TECP) and magnesium whitlockite (MWL). Both scanning and transmission electron microscopy were used to examine the elaborated interface. The time in which a mineralized extracellular matrix was formed on the various materials differed from 2 weeks on HA, TCP and TECP, to 8 weeks on FA. It was only occasionally observed in some areas on MWL, which might have been due to aluminum …