Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

2017

Simulation

Discipline
Institution
Publication

Articles 1 - 30 of 37

Full-Text Articles in Engineering

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …


Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei Dec 2017

Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei

Graduate Theses and Dissertations

Nextnano³ software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as …


A Parameterized Simulation Of Doppler Lidar, David B. Chester Dec 2017

A Parameterized Simulation Of Doppler Lidar, David B. Chester

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Upcoming missions to explore planetary bodies in the solar system will require accurate position and velocity data during descent in order to land safely at a predesignated site. A Doppler lidar instrument could provide measurements of the altitude, attitude, and velocity of the landing vehicle to supplement the data collected by other instruments. A flexible simulation tool would aid the tasks of designing and testing the functionality of such an instrument.

LadarSIM is a robust parameterized simulation tool developed for time of flight lidar at Utah State University's Center for Advanced Imaging Ladar. This thesis outlines how LadarSIM was modified …


State-Based Peridynamic Particle Method, Siavash Nikravesh Kazeroni Nov 2017

State-Based Peridynamic Particle Method, Siavash Nikravesh Kazeroni

Civil Engineering ETDs

In this study, a novel discrete Peridynamics framework called the “State-Based Peridynamic Particle Model (SPPM)” is introduced. In this approach, a solid body is simulated by neither solving differential equations nor integral equations; instead, the simulation is accomplished by directly solving discrete systems of equations using finite summations. SPPM is formulated for a random distribution of particles, hence, it can be considered as a meshfree method. The assumptions of continuity and homogeneity are not necessary for this approach. The SPPM is a generalization of the “State-Based Peridynamic Lattice Model (SPLM)”. In the SPLM formulation, for sake of simplicity and computational …


Mechanistic Modeling Of Nanoparticle-Stabilized Supercritical Co2 Foams And Its Implication In Field-Scale Eor Applications, Doris Patricia Ortiz Maestre Nov 2017

Mechanistic Modeling Of Nanoparticle-Stabilized Supercritical Co2 Foams And Its Implication In Field-Scale Eor Applications, Doris Patricia Ortiz Maestre

LSU Master's Theses

Previous experimental studies show that nanoparticle-stabilized supercritical CO2 foams (or, NP CO2 foams) can be applied as an alternative to surfactant foams, in order to reduce CO2 mobility in gas injection enhanced oil recovery (EOR). These nanoparticles, if chosen correctly, can be an effective foam stabilizer attached at the fluid interface in a wide range of physicochemical conditions.

By using NP CO2 foam experiments available in the literature, this study performs two tasks: (i) presenting how a mechanistic foam model can be used to fit experimental data and determine required model parameters, and (ii) investigating the …


Development Mems Acoustic Emission Sensors, Adrian Enrique Avila Gomez Nov 2017

Development Mems Acoustic Emission Sensors, Adrian Enrique Avila Gomez

USF Tampa Graduate Theses and Dissertations

The purpose of this research is to develop MEMS based acoustic emission sensors for structural health monitoring. Acoustic emission (AE) is a well-established nondestructive testing technique that is typically used to monitor for fatigue cracks in structures, leaks in pressurized systems, damages in composite materials or impacts. This technology can offer a precise evaluation of structural conditions and allow identification of imminent failures or minor failures that can be addressed by planned maintenances routines. AE causes a burst of ultrasonic energy that is measured as high frequency surface vibrations (30 kHz to 1 MHz) generated by transient elastic waves that …


Theory And Practice Of Supply Chain Synchronization, Michael Prokle Nov 2017

Theory And Practice Of Supply Chain Synchronization, Michael Prokle

Doctoral Dissertations

In this dissertation, we develop strategies to synchronize component procurement in assemble-to-order (ATO) production and overhaul operations. We focus on the high-tech and mass customization industries which are not only considered to be very important to create or keep U.S. manufacturing jobs, but also suffer most from component inventory burden. In the second chapter, we address the deterministic joint replenishment inventory problem with batch size constraints (JRPB). We characterize system regeneration points, derive a closed-form expression of the average product inventory, and formulate the problem of finding the optimal joint reorder interval to minimize inventory and ordering costs per unit …


Computational Prediction Of Conductivities Of Disk-Shaped Particulate Composites, Jian Qiu Nov 2017

Computational Prediction Of Conductivities Of Disk-Shaped Particulate Composites, Jian Qiu

Electronic Theses and Dissertations

The effective conductivities are determined for randomly oriented disk-shaped particles using an efficient computational algorithm based on the finite element method. The pairwise intersection criteria of disks are developed using a set of vector operations. An element partition scheme has been implemented to connect the elements on different disks across the lines of intersection. The computed conductivity is expressed as a function of the density and the size of the circular disks or elliptical plates. It is further expressed in a power-law form with the key parameters determined from curve fittings. The particle number and the trial number of simulations …


Modelling And Simulation Of Hydrogen Production Via Membrane Reactor, Aya Abdel-Hamid Smail Mourad Nov 2017

Modelling And Simulation Of Hydrogen Production Via Membrane Reactor, Aya Abdel-Hamid Smail Mourad

Chemical and Petroleum Engineering Theses

A membrane reactor is a promising device to produce pure hydrogen and enrich CO2 from syngas. A simulation study of a double tubular catalytic membrane reactor for the water-gas shift reaction (WGS) under steady-state operation is presented in this work. The membrane consists of a dense Pd layer (selective to H2) deposited on a porous glass cylinder support. The reaction side was filled with a commercial iron-chromium oxide catalyst, designed as Girdler G-3. The mass of the catalyst was 12.1 g and the height of the catalyst bed was 8 cm. The WGS model was carried out …


Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader Oct 2017

Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader

Masters Theses

Wind turbine efficiency typically focuses on the shape, orientation, or stiffness of the turbine blades. In this thesis, the focus is instead on using static fixed airfoils in proximity to the wind turbine to control the airflow coming out of the turbine. These control devices have three beneficial effects. (1) They gather air from “higher up” where the air is moving faster on average (and therefore has more kinetic energy in it). (2) They throw the used (and slowed down air) downwards. This means that any turbines in the wind farm behind the lead turbines do not get “stale” air. …


Simulation, Performance And Interference Analysis Of Multi-User Visible Light Communication Systems, Adel Aldalbahi Oct 2017

Simulation, Performance And Interference Analysis Of Multi-User Visible Light Communication Systems, Adel Aldalbahi

Dissertations

The emergence of new physical media such as optical wireless, and the ability to aggregate these new media with legacy networks motivate the study of heterogeneous network performance, especially with respect to the design of protocols to best exploit the characteristics of each medium.

This study considers Visible Light Communications (VLC), which is expected to coexist with legacy and future radio frequency (RF) media. While most of the research on VLC has been done on optimizing the physical medium, research on higher network layers is only beginning to gain attention, requiring new analyses and tools for performance analysis.

The first …


Role Of Surface Factors On Heterogeneous Ice Nucleation, Brittany Glatz Oct 2017

Role Of Surface Factors On Heterogeneous Ice Nucleation, Brittany Glatz

All Dissertations

Heterogeneous ice nucleation is the primary pathway for ice formation. However, the detailed molecular mechanisms by which surfaces promote or hinder ice nucleation are not well understood. We present results from extensive molecular dynamics and forward flux sampling (FFS) simulations of ice nucleation near modified surfaces. The surfaces are modified to investigate the effects of different surface factors on the rate and mechanism of ice nucleation. We find that the surface charge distribution has significant effects on ice nucleation. We also investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching …


Performance Analysis Of Constant Speed Local Abstacle Avoidance Controller Using A Mpc Algorithym On Granular Terrain, Nicholas Haraus Oct 2017

Performance Analysis Of Constant Speed Local Abstacle Avoidance Controller Using A Mpc Algorithym On Granular Terrain, Nicholas Haraus

Master's Theses (2009 -)

A Model Predictive Control (MPC) LIDAR-based constant speed local obstacle avoidance algorithm has been implemented on rigid terrain and granular terrain in Chrono to examine the robustness of this control method. Provided LIDAR data as well as a target location, a vehicle can route itself around obstacles as it encounters them and arrive at an end goal via an optimal route. This research is one important step towards eventual implementation of autonomous vehicles capable of navigating on all terrains. Using Chrono, a multibody physics API, this controller has been tested on a complex multibody physics HMMWV model representing the plant …


Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett Aug 2017

Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett

Electronic Theses and Dissertations

As Unmanned Aerial Vehicle (UAV), or “drone” applications expand, new methods for sensing, navigating and avoiding obstacles need to be developed. The project applies an Extended Kalman Filter (EKF) to a simulated quadcopter vehicle though Matlab in order to estimate not only the vehicle state but the world state around the vehicle. The EKF integrates multiple sensor readings from range sensors, IMU sensors, and radiation sensors and combines this information to optimize state estimates. The result is an estimated world map to be used in vehicle navigation and obstacle avoidance.

The simulation handles the physics behind the vehicle flight. As …


Efficient Implementation Of Stochastic Inference On Heterogeneous Clusters And Spiking Neural Networks, Khadeer Ahmed Aug 2017

Efficient Implementation Of Stochastic Inference On Heterogeneous Clusters And Spiking Neural Networks, Khadeer Ahmed

Dissertations - ALL

Neuromorphic computing refers to brain inspired algorithms and architectures. This paradigm of computing can solve complex problems which were not possible with traditional computing methods. This is because such implementations learn to identify the required features and classify them based on its training, akin to how brains function. This task involves performing computation on large quantities of data. With this inspiration, a comprehensive multi-pronged approach is employed to study and efficiently implement neuromorphic inference model using heterogeneous clusters to address the problem using traditional Von Neumann architectures and by developing spiking neural networks (SNN) for native and ultra-low power implementation. …


Personalized Decision Modeling For Intervention And Prevention Of Cancers, Fan Wang Aug 2017

Personalized Decision Modeling For Intervention And Prevention Of Cancers, Fan Wang

Graduate Theses and Dissertations

Personalized medicine has been utilized in all stages of cancer care in recent years, including the prevention, diagnosis, treatment and follow-up. Since prevention and early intervention are particularly crucial in reducing cancer mortalities, personalizing the corresponding strategies and decisions so as to provide the most appropriate or optimal medical services for different patients can greatly improve the current cancer control practices. This dissertation research performs an in-depth exploration of personalized decision modeling of cancer intervention and prevention problems. We investigate the patient-specific screening and vaccination strategies for breast cancer and the cancers related to human papillomavirus (HPV), representatively. Three popular …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Full Simulation For The Qweak Experiment At 1.16 And 0.877 Gev And Their Impact On Extracting The Pv Asymmetry In The N→Δ A Transition, Hend Abdullah Nuhait Jul 2017

Full Simulation For The Qweak Experiment At 1.16 And 0.877 Gev And Their Impact On Extracting The Pv Asymmetry In The N→Δ A Transition, Hend Abdullah Nuhait

Doctoral Dissertations

The Qweak project is seeking to find new physics beyond the Standard Model. It is aimed to measure the weak charge of the proton, which has never been measured, at 4% precision at low momentum transfer. The experiment is performed by scattering electrons from protons and exploiting parity violation in the weak interaction at low four-momentum transfer.

In this experiment, two measurements were considered: which are elastic and inelastic. The elastic is to measure the proton's weak charge. In addition, the inelastic asymmetry measurement, which will extract the low energy constant dΔ. That measurement works in the neutral current …


Dynamic Simulation And Analysis Of Gait Modification For Treating Knee Osteoarthritis, Taylor Elyse Schlotman May 2017

Dynamic Simulation And Analysis Of Gait Modification For Treating Knee Osteoarthritis, Taylor Elyse Schlotman

Doctoral Dissertations

Roughly 47.5 million people in the US have a disability, with 8.6 million reporting arthritis as their main cause of disability, making arthritis the leading cause of physical disability. With decreased mortality rates and a large, aging baby boomer generation, there will be more adults living with chronic musculoskeletal conditions causing disabilities that limit walking. Since walking ability is directly related to an individual’s independence at home and in the community, losing this ability is a major setback for patients with arthritis. Knee osteoarthritis (OA) is the most prevalent form of arthritis affecting approximately 27 million adults and accounts for …


Low Bandwidth Communication For Networked Power Hardware-In-The-Loop Simulation, Sean Borgsteede May 2017

Low Bandwidth Communication For Networked Power Hardware-In-The-Loop Simulation, Sean Borgsteede

Theses and Dissertations

Power-Hardware-In-the-Loop (PHIL) simulations allow the design and validation of power hardware components in virtual power system schemas with near real-time operation. This technique is increasingly used in the development cycle of many products to reduce design costs and increase design fidelity. The Hardware under Test (HuT) interfaces with a simulation of the user’s choosing through a hardware interface (HI). The digitally simulated system (DSS) runs on the real-time simulator before sending a reference value to the hardware interface to enforce. In this virtual to real interface, closed-loop stability and the simulation accuracy are the two paramount criteria in regards to …


Numerical Simulation Of Metallic Uranium Sintering, Bruce Berry May 2017

Numerical Simulation Of Metallic Uranium Sintering, Bruce Berry

Graduate Theses and Dissertations

Conventional ceramic oxide nuclear fuels are limited in their thermal and life-cycle properties. The desire to operate at higher burnups as is required by current utility economics has proven a formidable challenge for oxide fuel designs. Metallic formulations have superior thermal performance but are plagued by volumetric swelling due to fission gas buildup. In this study, we consider a number of specific microstructure configurations that have been experimentally shown to exhibit considerable resistance to porosity loss. Specifically, a void sizing that is bimodally distributed was shown to resist early pore loss and could provide collection sites for fission gas buildup. …


Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido May 2017

Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido

Graduate Theses and Dissertations

Dynamic representations of power systems usually result in the order of hundreds or even thousands of buses. Therefore, reduction of these dynamic representations is convenient. Two applications of model order reduction in power systems are discussed in this thesis. First, Krylov subspace-based method is applied to the IEEE-123 Node Test Feeder in the context of distribution-level power systems simulation. Second, a Balanced Truncation-based model reduction is implemented in the 3-Machine 9-Bus system for designing a power system controller in the context of generation- and transmission-level power systems.

First, for the IEEE-123 Node Test Feeder, a two-sided Arnoldi algorithm is proposed …


Performance Analysis Of Organizations As Complex Systems., William C. Harrington Jr. May 2017

Performance Analysis Of Organizations As Complex Systems., William C. Harrington Jr.

Electronic Theses and Dissertations

This dissertation provides a method for evaluating the difference in performance after an organization makes a change while considering the stochastic nature in which it operates. A procedure that uses simulation to estimate outcomes by adjusting controllable parameters and leaving uncontrolled parameters unadjusted is proposed. As healthcare organizations are considered as highly complex systems, a case study involving a scheduling tactic change in the mother-baby service line of a hospital is used to demonstrate application of this procedure. The goal in the case study was to reduce delays in transitioning care of mother patients from the labor and delivery unit …


Optimizing The B.O.B., Valerie N. Washington, Douglas Starzec Apr 2017

Optimizing The B.O.B., Valerie N. Washington, Douglas Starzec

KSU Journey Honors College Capstones and Theses

The Kennesaw State University Department of Transportation manages the Big Owl Bus (B.O.B.). The B.O.B. has 9 routes which provide transportation around and between the Kennesaw and Marietta campuses, as well as to select off-campus apartment complexes and shopping centers. We utilized a number of methodologies to recommend improvements to the efficiency and accessibility of the B.O.B. We first used the vehicle routing problem to develop a binary integer linear programming model. This allowed us to determine a new set of routes that minimize total travel time across the routes. Next, we developed an integer non-linear programming model to assign …


Simulation And Analysis Of A Drilling Fluid Using A Herschel-Bulkley Model, Daniel Powell Apr 2017

Simulation And Analysis Of A Drilling Fluid Using A Herschel-Bulkley Model, Daniel Powell

Mechanical Engineering ETDs

In the study, a drilling fluid with known properties is analyzed and simulated in the laminar regime through a pipe with dimensions of 1.5m in length and 0.02m in diameter. The purpose of the conducted analysis is to demonstrate the advantages of the Herschel-Bulkley model currently used in the oil and gas industry for analyzing non-Newtonian drilling fluids.

For comparison, the analysis is also performed using more simple models for non-Newtonian fluids such as the Bingham Plastic model and the Power Law model and for a Newtonian fluid (water). In addition to analytical models, computations are conducted using …


Development Of An Atlas-Based Segmentation Of Cranial Nerves Using Shape-Aware Discrete Deformable Models For Neurosurgical Planning And Simulation, Sharmin Sultana Apr 2017

Development Of An Atlas-Based Segmentation Of Cranial Nerves Using Shape-Aware Discrete Deformable Models For Neurosurgical Planning And Simulation, Sharmin Sultana

Computational Modeling & Simulation Engineering Theses & Dissertations

Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as …


A Predictor Analysis Framework For Surface Radiation Budget Reprocessing Using Design Of Experiments, Patricia Allison Quigley Apr 2017

A Predictor Analysis Framework For Surface Radiation Budget Reprocessing Using Design Of Experiments, Patricia Allison Quigley

Engineering Management & Systems Engineering Theses & Dissertations

Earth’s Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth’s surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1°x1° …


Optimizing Control Of Shell Eco-Marathon Prototype Vehicle To Minimize Fuel Consumption, Chad Louis Bickel Apr 2017

Optimizing Control Of Shell Eco-Marathon Prototype Vehicle To Minimize Fuel Consumption, Chad Louis Bickel

Master's Theses

Every year the automotive industry strives to increase fuel efficiency in vehicles. When most vehicles are designed, fuel efficiency cannot always come first. The Shell Eco-marathon changes that by challenging students everywhere to develop the most fuel-efficient vehicle possible. There are many different factors that affect fuel efficiency, and different teams focus on different vehicle parameters. Currently, there is no straightforward design tool that can be used to help in Shell Eco-marathon vehicle design. For this reason, it is difficult to optimize every vehicle parameter for maximum fuel efficiency.

In this study, a simulation is developed by using basic vehicle …


System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha Jan 2017

System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha

Electronic Theses and Dissertations

The advancement in automation and sensory systems in recent years has led to an increase the demand of UAV missions. Due to this increase in demand, the research community has gained interest in investigating UAV performance enhancing systems. Circulation Control (CC), which is an active control flow method used to enhance UAV lift, is a performance enhancing system currently studied. In prior research, experimental studies have shown that Circulation Control wings (CCW) implemented on class-I UAVs can reduce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload capabilities through lift enhancement. Increasing aircraft payload capabilities causes …


Simulation Study On Effect Of Gas Charging And Egr In A Dual-Fuel Engine, Satyavenkata Naga Sai Sharath Gorthy Jan 2017

Simulation Study On Effect Of Gas Charging And Egr In A Dual-Fuel Engine, Satyavenkata Naga Sai Sharath Gorthy

Dissertations, Master's Theses and Master's Reports

Natural gas combined with diesel as micro pilot has the capabilities of achieving lower NOx and soot emissions. Optimization of the combustion process in engines with natural gas and diesel micro-pilot is essential to achieve higher efficiencies and loads. Gas charging (intake air boosting) and EGR are two technologies which when implemented in the natural gas-diesel engines, provide the opportunity to achieve higher efficiencies and loads and low emissions. Simulation study is one of the approaches to investigate the extent and effects of gas charging and EGR on the performance of the engine. With the rapid improvements over the past …