Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Carbon

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 206

Full-Text Articles in Engineering

Direct Air Capture: Catalyzing A Carbon Negative Future, Tagg K. Lee Jan 2023

Direct Air Capture: Catalyzing A Carbon Negative Future, Tagg K. Lee

Civil and Environmental Engineering Publications

Direct Air Capture (DAC) technology has emerged as a promising means to address the escalating challenges of atmospheric carbon dioxide (CO2) levels and mitigate climate change. This paper provides an elementary overview of DAC, encompassing its underlying principles, technological advancements, and associated challenges. Point Source Carbon Capture is compared against Direct Air Capture with a solid or liquid sorbent, and physisorbents/chemisorbents are outlined. The past decade has seen a steep rise in the usage of chemical sorbents in particular, which are explored alongside their regeneration processes. This review provides an introductory explanation for the mechanisms of common DAC …


Pressureless Sintering Of Zirconium Diboride With Carbon And Boron Carbide Nanopowder, Eric W. Neuman, Gregory E. Hilmas, William Fahrenholtz May 2022

Pressureless Sintering Of Zirconium Diboride With Carbon And Boron Carbide Nanopowder, Eric W. Neuman, Gregory E. Hilmas, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

Zirconium diboride ceramics with and without carbon and boron carbide nano powder additives were prepared by ball milling with ZrB2 grinding media and pressureless sintering. Additions of up to 1 wt% nano-B4C and 0.5 wt% C were made to the ZrB2 powder. The materials were then sintered between 1800 and 2300 °C for between 90 and 360 min in an Ar/10H2 atmosphere. After sintering at 2200 °C for 90 min, densities ranged from 88.3 to 90.7% for the ZrB2 with 0–1.0% nano-B4C addition. Carbon additions of 0.5 wt% and nano-B4C additions from 0 to 1.0 wt% resulted in densities ranging …


Characterization Of Biochar As A Carbon Regulator In Manure And Environmental Management Applications, Josephine Getz Jan 2022

Characterization Of Biochar As A Carbon Regulator In Manure And Environmental Management Applications, Josephine Getz

Doctoral

Biochar is a product of pyrolysis, which is the thermal decomposition of materials at elevated temperatures (300 - 900 °C) in an oxygen-limited atmosphere. Biochar has been recognized as a potentially vital tool to help reduce the climate change impact. It has been used in the agricultural sector as an addition to reduce greenhouse gas emissions in several animal husbandry settings. The application in the animal sector is an important point to reduce the overall amount of greenhouse gases released as this sector produces many greenhouse gases. Though not in every case a reduction of emissions was the result of …


Investigation Of Carbon-Based Label-Free Electrochemical Aptasensors For Point-Of-Care Cancer Biomarker Detection, Shahrzad Forouzanfar Jun 2021

Investigation Of Carbon-Based Label-Free Electrochemical Aptasensors For Point-Of-Care Cancer Biomarker Detection, Shahrzad Forouzanfar

FIU Electronic Theses and Dissertations

Cancer is the second cause of death, with millions of fatalities every year. The early detection of cancer can tremendously increase the survival chances of the patients. An effective approach for early detection of cancer is developing reliable and relatively cheap biosensors that can quantify the cancer biomarkers from blood samples. These classes of the biosensor are commonly referred to as point-of-care (POC) cancer biomarker biosensors. The label-free electrochemical biosensors based on carbon dravite materials can be feasible for POC cancer biomarker biosensors. The present dissertation aims to design, develop, and optimize carbon-based biosensors for label-free detection of lactic acid …


Development Of Novel Catalysts For Hydrogen Gas Production From Biomass Compounds, Boanerges Bamaca Aug 2020

Development Of Novel Catalysts For Hydrogen Gas Production From Biomass Compounds, Boanerges Bamaca

Department of Biological Systems Engineering: Dissertations and Theses

Hydrothermal biomass gasification technologies (sub- and supercritical water gasification and aqueous-phase reforming) have considerable economic, environmental, and technical advantages over other energy-extensive technologies (e.g. natural gas reforming) for hydrogen gas production. However, lack of economically feasible and highly active catalysts is a main challenge that impedes upscaling of these technologies for hydrogen gas production.

The goal of this study was to develop innovative, economically feasible and active heterogeneous supported metal catalysts for hydrothermal processes for producing hydrogen gas from biomass-derived compounds. Because of its stable structure and chemical inertness, graphene was used as catalyst support. Graphene supported metal catalysts were …


Carbon-Based Artificial Sei Layers For Aqueous Lithium-Ion Battery Anodes, Usha Subramanya, Charleston Chua, Victor Gin He Leong, Ryan Robinson, Gwenlyn Cruz Cabiltes, Prakirti Singh, Bonnie Yip, Anuja Bokare, Folarin Erogbogbo, Dahyun Oh Jan 2020

Carbon-Based Artificial Sei Layers For Aqueous Lithium-Ion Battery Anodes, Usha Subramanya, Charleston Chua, Victor Gin He Leong, Ryan Robinson, Gwenlyn Cruz Cabiltes, Prakirti Singh, Bonnie Yip, Anuja Bokare, Folarin Erogbogbo, Dahyun Oh

Faculty Publications

Replacing flammable organic electrolytes with aqueous electrolytes in lithium-ion batteries (LIB) can greatly enhance the safety of next-generation energy storage systems. With the extended electrochemical stability window of electrolytes, 'water-in-salt' (WIS) electrolytes containing LIB presented significant performance improvements. However, the solubility limits of lithium salts in water restrain the extent of kinetic protection offered by the high salt concentration. Here, we report design strategies of anode structure to improve the cycle life of LIB with WIS electrolytes. We introduced partially graphitic protective carbon layers on anode particles using a versatile coating method. This protective layer not only improved charge transfer …


S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen Jan 2020

S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen

Australian Institute for Innovative Materials - Papers

2020 Iron sulfides draw much attention as electrode candidates for sodium-ion batteries (SIBs) due to the rich chemical stoichiometries and high capacity. However, they usually exhibit poor cycling performance due to the large volume change during sodiation/desodiation process. In this work, we embed Fe7S8 nanoparticles into sulfur, nitrogen-doped carbon (S/N-C) nanofibers through electrospinning/sulfurization processes. The heteroatom doped carbon matrixes could effectively protect the Fe7S8 from structural collapse, obtaining a stable cycling performance. Moreover, the conductive matrixes with 1D structure can facilitate the diffusion of electrons, leading to good rate capability. As results, the as-designed Fe7S8@S/N-C nanofibers present a discharge capacity …


Evaluation And Enhancement Of Carbon Sequestration Potential Of Existing Vegetation Along Roadsides, Vikram Kapoor, Jeffrey Hutchinson, Samer Dessouky Aug 2019

Evaluation And Enhancement Of Carbon Sequestration Potential Of Existing Vegetation Along Roadsides, Vikram Kapoor, Jeffrey Hutchinson, Samer Dessouky

Publications

The objectives of this study were to evaluate the vegetative composition and carbon sequestration potential of vegetation along a major roadway in Texas. Soil and vegetation were evaluated along IH-35 within Bexar County for composition and carbon content. Three 20 m transects were placed at each site and percent vegetative cover was estimated and above ground plant biomass, and soil was collected from three 0.25 m2 subplots along each transect. Plant and soil samples were analyzed for carbon content. Two non-native grasses, bermudagrass and King Ranch bluestem, were the dominant cover at all sites accounting for > 90% coverage at several …


Prototyping A Conductive Polymer Steering Pad For Rail Freight Service, Anthony A. Villarreal, Constantine Tarawneh, Miguel Ontiveros, James Aranda, Robert Jones Jul 2019

Prototyping A Conductive Polymer Steering Pad For Rail Freight Service, Anthony A. Villarreal, Constantine Tarawneh, Miguel Ontiveros, James Aranda, Robert Jones

Mechanical Engineering Faculty Publications and Presentations

The AdapterPlus™ steering pad is a polymer component on a railcar that helps to reduce stresses on the axle as a railcar rounds a curve. One railway application requires a minimum of 240 mA to be passed through the steering pad to the rail, which activates air valves that control automated cargo gates. Currently, two copper studs are inserted into the pad to provide a conductive path. However, after continuous cyclic loading caused by normal service operation, the copper studs deform, wear, and eventually lose contact between the two surfaces rendering the pad nonconductive. One proposed solution to this problem …


Improving The Distribution And Use Of Biogas By Conversion To Methanol, Zachary Christman Mar 2019

Improving The Distribution And Use Of Biogas By Conversion To Methanol, Zachary Christman

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

In this technology review, the process of turning an average biogas into methanol will be presented. The purpose is to find a better method of transporting the energy contained within biogas so that it may be used in industry as a value added product. The first step is removal of hydrogen sulfide, a corrosive chemical that can breakdown mechanical parts. The second step is carbon capture and conversion of the biogas into hydrogen. The final step is the hydrogenation of carbon dioxide into methanol using a copper catalyst and an alcohol co-catalyst.


A Method Of Uncertainty Analysis For Whole-Life Embodied Carbon Emissions (Co2-E) Of Building Materials Of A Net-Zero Energy Building In Australia, Mehdi Robati, Daniel J. Daly, Georgios Kokogiannakis Jan 2019

A Method Of Uncertainty Analysis For Whole-Life Embodied Carbon Emissions (Co2-E) Of Building Materials Of A Net-Zero Energy Building In Australia, Mehdi Robati, Daniel J. Daly, Georgios Kokogiannakis

Faculty of Engineering and Information Sciences - Papers: Part B

The construction of new buildings requires the use of a substantial amount of materials, which have an associated embodied energy for manufacturing, transport, construction and end-of-life disposal. A number of inventories have been developed to collate the typical embodied energy or carbon emissions associated with different building materials and activities, and these can be used to quantify the environmental impacts of different construction methods. However, uncertainty exists in the estimation of embodied CO2-e emissions and other environmental impact results, due to i) inconsistencies in typical embodied carbon emissions values in inventories; ii) errors in estimations of material quantities; iii) assumptions …


Electrostatically Assembled Construction Of Ternary Tio2-Cu@C Hybrid With Enhanced Solar-To-Hydrogen Evolution Employing Amorphous Carbon Dots As Electronic Mediator, Jiaxin Zhu, Mengmeng Zhang, Jinyan Xiong, Yinan Yan, Weijie Li, Gang Cheng Jan 2019

Electrostatically Assembled Construction Of Ternary Tio2-Cu@C Hybrid With Enhanced Solar-To-Hydrogen Evolution Employing Amorphous Carbon Dots As Electronic Mediator, Jiaxin Zhu, Mengmeng Zhang, Jinyan Xiong, Yinan Yan, Weijie Li, Gang Cheng

Australian Institute for Innovative Materials - Papers

The huge demand for renewable hydrogen produced by water splitting has prompted people to conduct in-depth research on the hydrogen evolution reaction for the development of earth-abundant, non-precious, and multi-functional metal catalysts. Herein, a noble-metal-free ternary composite of TiO2-Cu@C was prepared by electrostatic self-assembly loaded copper nanoparticles and amorphous carbon dots (CDs) on porous TiO2 microrods. The good conductivity of the CDs was beneficial to promoting the charge transfer and separation, generating an enhanced solar-to-hydrogen performance on TiO2-Cu@C. The optimized TiO2-Cu@C reveals a stable and notable hydrogen evolution rate of 3911 μmol g−1h−1, which is 1.6 times that of TiO2-Cu …


Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou Jan 2019

Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Despite the significant progress in the fabrication of advanced electrode materials, complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions, morphologies, and chemistries. Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species, we propose the use of skin collagen fibers for the template crafting of a novel multicore-shell Fe2N-carbon framework anode configuration, composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles (Fe2N@N-CFBs). In the resultant heterostructure, the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well …


Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu Jan 2019

Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

CoSe2-SnSe2/NC nanocubes (CSNC@NC) coated by nitrogen-doped carbon (NC) were synthesized successfully by an ordinary pyrazole polymerization and carbonization process. In comparison with bare CSNC, the CSNC@NC composite exhibited good structural stability and improved electrical conductivity when used as anode. The CSNC@NC electrode showed a stable Li storage capacity (730.41 mAh g−1 over 100 cycles at 0.2 A g−1) and excellent rate performance (402.10 mAh g−1 at 2 A g−1). For Na storage, the discharge capacity could be maintained 279.3 mAh g−1 over 100 cycles at 0.2 A g−1; the lower capacity than that for Li storage maybe caused by the …


Constructing Coo/Co3s4 Heterostructures Embedded In N-Doped Carbon Frameworks For High-Performance Sodium-Ion Batteries, Can Guo, Wenchao Zhang, Yi Liu, Jiapeng He, Shun Yang, Mingkai Liu, Qinghong Wang, Zaiping Guo Jan 2019

Constructing Coo/Co3s4 Heterostructures Embedded In N-Doped Carbon Frameworks For High-Performance Sodium-Ion Batteries, Can Guo, Wenchao Zhang, Yi Liu, Jiapeng He, Shun Yang, Mingkai Liu, Qinghong Wang, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Heterostructures are attractive for advanced energy storage devices due to their rapid charge transfer kinetics, which is of benefit to the rate performance. The rational and facile construction of heterostructures with satisfactory electrochemical performance, however, is still a great challenge. Herein, ultrafine hetero-CoO/Co3S4 nanoparticles embedded in N-doped carbon frameworks (CoO/Co3S4@N-C) are successfully obtained by employing metal-organic frameworks as precursors. As anodes for sodium ion batteries, the CoO/Co3S4@N-C electrodes exhibit high specific capacity (1029.5 mA h g−1 at 100 mA g−1) and excellent rate capability (428.0 mA h g−1 at 5 A g−1), which may be attributed to their enhanced electric …


Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji Jan 2019

Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji

Electrical & Computer Engineering Faculty Publications

Tungsten oxide is a versatile material with different applications. It has many polymorphs with varying performance in energy storage application. We report simple and facile way to synthesize four phases of tungsten oxide from same precursor materials only by changing the pH and temperature values. Monoclinic, hexagonal, orthorhombic and tetragonal phase obtained, were analyzed and tested for supercapacitor application. The electrochemical analysis of four phases indicates that the hexagonal phase is best-suited electrode material for supercapacitor. The hexagonal phase exhibits higher specific capacitance (377.5 Fg-1 at 2 mVs-1), higher surface capacitive contribution (75%), better stability and rate …


First-Principles Study Of The Products Of Co2 Dissociation On Nickel-Based Alloys: Trends In Energetics With Alloying Element, Lynza H. Sprowl, Benjamin Adam, Julie D. Tucker, Líney Árnadóttir Nov 2018

First-Principles Study Of The Products Of Co2 Dissociation On Nickel-Based Alloys: Trends In Energetics With Alloying Element, Lynza H. Sprowl, Benjamin Adam, Julie D. Tucker, Líney Árnadóttir

Mechanical and Materials Engineering Faculty Publications and Presentations

Oxidation and corrosion of nickel and Ni-based alloys are a problem for many industrial applications, such as power plants that use supercritical CO2 as the working fluid. In supercritical CO2 environments, CO2 dissociates on the surface forming adsorbed CO and O, which can oxidize the surface. The adsorbed CO can further breakdown via direct CO dissociation or via the Boudouard reaction to form adsorbed C, which can in turn carburize the surface. Understanding how the adsorbed species interact with different Ni-based alloys can help guide the design of future alloys. The interactions of adsorbed O, C, and CO on the …


Performance Of Carbon Aerogel/Fiber Paper As Capacitive Deionization Electrodes Under Variable Operating Conditions, Md Ashique Ahmed, Sanjay Tewari Jun 2018

Performance Of Carbon Aerogel/Fiber Paper As Capacitive Deionization Electrodes Under Variable Operating Conditions, Md Ashique Ahmed, Sanjay Tewari

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The capacitive deionization has garnered renewed interested with recent modifications resulting in efficient (energy and cost) alternatives to desalinate brackish water (salt concentration less than 10 g/L). Recent research efforts, to improve the technology, have been focused mainly on electrode material development and modifications of operational parameters for optimized performance. This research is focused on performance evaluation of carbon aerogel/fiber paper as capacitive deionization electrodes under variable operating conditions. The main operational parameters that were varied are applied voltage, influent temperature and initial concentration. The highest adsorption capacity achieved in this on-going study is 4.61 mg/g at 33.5 oC with …


Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma Jan 2018

Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma

Australian Institute for Innovative Materials - Papers

NaTi2(PO4)3 has attracted great interest as anode material for sodium ion batteries owing to its open three-dimensional framework structure and limited volume changes during the charge and discharge process. However, the poor intrinsic electronic conductivity of NaTi2(PO4)3 needs to be improved for high rate capability. In this work, porous NaTi2(PO4)3 nanocubes anchored on porous carbon nanosheets (NaTi2(PO4)3/C) are designed and developed. This material exhibits a large discharge capacity and good rate capacity including a first discharge capacity of 485 mAh g−1 at a current density of 0.1 A g−1, and 98 mAh g−1 retained at a high rate of 4 …


A Sustainable Approach For Tungsten Carbide Synthesis Using Renewable Biopolymers, Monsur Islam, Rodrigo Martinez-Duarte Sep 2017

A Sustainable Approach For Tungsten Carbide Synthesis Using Renewable Biopolymers, Monsur Islam, Rodrigo Martinez-Duarte

Publications

Here we present a sustainable, environment-friendly and energy-efficient approach for synthesis of porous tungsten carbide (WC). A biopolymer-metal oxide composite featuring iota-carrageenan, chitin and tungsten trioxide (WO3) was used as the precursor material. The reaction mechanism for the synthesis of WC was estimated using the results from X-ray diffraction characterization (XRD). A synthesis temperature of 1300 °C and dwell time of 3 h were found to be the optimum process parameters to obtain WC>98% pure. The grain size, porosity and Brunauer–Emmett–Teller (BET) surface area of the synthesized WC were characterized using field emission scanning electron microscopy, high resolution transmission …


Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi Aug 2017

Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi

Faculty Publications

The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC) elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i) the repeatability and accuracy of sensors’ behavior …


Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn For Selective And Sensitive Detection Of Dopamine, Wed Al-Graiti, Zhilian Yue, Javad Foroughi, Xu-Feng Huang, Gordon G. Wallace, Ray H. Baughman, Jun Chen Jan 2017

Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn For Selective And Sensitive Detection Of Dopamine, Wed Al-Graiti, Zhilian Yue, Javad Foroughi, Xu-Feng Huang, Gordon G. Wallace, Ray H. Baughman, Jun Chen

Australian Institute for Innovative Materials - Papers

The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT) yarns. The MWNT yarn-based sensors can be fabricated onto micro Pt-wire with a controlled diameter varying from 100 to 300 µm, and then further modified with Nafion via a dip-coating approach. The fabricated micro-sized sensors were characterized by electron microscopy, Raman, FTIR, electrical, and electrochemical measurements. For the first time, the …


Hollow Carbon Nanobubbles: Monocrystalline Mof Nanobubbles And Their Pyrolysis, Wei Zhang, Xiangfen Jiang, Yanyi Zhao, Arnau Carne-Sanchez, Victor Malgras, Jeonghun Kim, Jung Ho Kim, Shaobin Wang, Jian Liu, Ji-Sen Jiang, Yusuke Yamauchi, Ming Hu Jan 2017

Hollow Carbon Nanobubbles: Monocrystalline Mof Nanobubbles And Their Pyrolysis, Wei Zhang, Xiangfen Jiang, Yanyi Zhao, Arnau Carne-Sanchez, Victor Malgras, Jeonghun Kim, Jung Ho Kim, Shaobin Wang, Jian Liu, Ji-Sen Jiang, Yusuke Yamauchi, Ming Hu

Australian Institute for Innovative Materials - Papers

While bulk-sized metal-organic frameworks (MOFs) face limits to their utilization in various research fields such as energy storage applications, nanoarchitectonics is believed to be a possible solution. It is highly challenging to realize MOF nanobubbles with monocrystalline frameworks. By a spatially controlled etching approach, here, we can achieve the synthesis of zeolitic imidazolate framework (ZIF-8) nanobubbles with a uniform size of less than 100 nm. Interestingly, the ZIF-8 nanobubbles possess a monocrystalline nanoshell with a thickness of around 10 nm. Under optimal pyrolytic conditions, the ZIF-8 nanobubbles can be converted into hollow carbon nanobubbles while keeping their original shapes. The …


Hybrid Structure Of White Layer In High Carbon Steel - Formation Mechanism And Its Properties, Rumana Hossain, Farshid Pahlevani, Evelien Witteveen, Amborish Banerjee, Bill Joe, B Prusty, Rian J. Dippenaar, Veena Sahajwalla Jan 2017

Hybrid Structure Of White Layer In High Carbon Steel - Formation Mechanism And Its Properties, Rumana Hossain, Farshid Pahlevani, Evelien Witteveen, Amborish Banerjee, Bill Joe, B Prusty, Rian J. Dippenaar, Veena Sahajwalla

Faculty of Engineering and Information Sciences - Papers: Part B

This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and …


Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim Jan 2017

Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim

Australian Institute for Innovative Materials - Papers

The reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composites are coated onto the polycaprolactone (PCL) substrate via spray coating technique to prepare a flexible supercapacitor. The electrochemical properties of the flexible PCL supercapacitor as a function of bending cycles and angles are evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the flexible PCL supercapacitor exhibit capacitive behavior even after prolonged bending cycles up to 500. The highest capacitance value of the unbent PCL supercapacitor is 52.5 F g-1 which retained 65% after 500 bending with 6000th galvanostatic charge/discharge cycles.


Capillary-Induced Ge Uniformly Distributed In N-Doped Carbon Nanotubes With Enhanced Li-Storage Performance, Haipeng Guo, Boyang Ruan, Lili Liu, Lei Zhang, Zhanliang Tao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2017

Capillary-Induced Ge Uniformly Distributed In N-Doped Carbon Nanotubes With Enhanced Li-Storage Performance, Haipeng Guo, Boyang Ruan, Lili Liu, Lei Zhang, Zhanliang Tao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Germanium (Ge) is a prospective anode material for lithium-ion batteries, as it possesses large theoretical capacity, outstanding lithium-ion diffusivity, and excellent electrical conductivity. Ge suffers from drastic capacity decay and poor rate performance, however, owing to its low electrical conductivity and huge volume expansion during cycling processes. Herein, a novel strategy has been developed to synthesize a Ge at N-doped carbon nanotubes (Ge at N-CNTs) composite with Ge nanoparticles uniformly distributed in the N-CNTs by using capillary action. This unique structure could effectively buffer large volume expansion. When evaluated as an anode material, the Ge at N-CNTs demonstrate enhanced cycling …


Indentation Behavior Of Superelastic Hard Carbon, Olga Chernogorova, Ekaterina Drozdova, Iraida Ushakova, Evgenii Ekimov, Vicente Benavides, Aleksander Soldatov Oct 2016

Indentation Behavior Of Superelastic Hard Carbon, Olga Chernogorova, Ekaterina Drozdova, Iraida Ushakova, Evgenii Ekimov, Vicente Benavides, Aleksander Soldatov

Nanomechanical Testing in Materials Research and Development V

Supererlastic hard carbon particles up to 1 mmin size were produced by fullerene collapse upon high-pressure high-temperature treatment with simultaneous sintering of metal-matrix composite materials (CM) reinforced by such particles. The hardness of carbon particles can be varied in a wide range by changing the parameters of their structure, which consists of curved graphene planes or their packets of different sizes. Such carbon phase was called “nanoclusterd graphene phase” (NGP) [1]. The properties of the carbon particles were controlled by changing treatment pressure (5 and 8 GPa) and temperature (1100-1800 K), composition of parent fullerites (C60 or C60/70), and pre-treatment …


Carbon Particles, Stephen M. Lipka, Christopher R. Swartz Sep 2016

Carbon Particles, Stephen M. Lipka, Christopher R. Swartz

Center for Applied Energy Research Faculty Patents

A composition generally includes carbon particles. The particles are prepared by dissolving a carbohydrate-based precursor in water to form a precursor solution and placing the precursor solution in a pressure vessel. The precursor solution is placed in a pressure vessel. The pressure vessel is heated to a reaction temperature to form carbon particles. The carbon particles are subjected to a chemical activation and a physical activation. The composition includes, by weight, about 5% to about 30% oxygen.


Phytovolatilization Of Organic Contaminants, Matt Limmer, Joel Gerard Burken Jul 2016

Phytovolatilization Of Organic Contaminants, Matt Limmer, Joel Gerard Burken

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, …


Heating Element Including Carbon Nanotube (Cnt) Layer, Santhosh Kumar Loganathan, Virginie Rollin, Daewon Kim Apr 2016

Heating Element Including Carbon Nanotube (Cnt) Layer, Santhosh Kumar Loganathan, Virginie Rollin, Daewon Kim

Publications

Apparatus , materials , and techniques and techniques herein can include providing a deposited layer comprising a com posite material including carbon nanotubes ( CNTs ) . Accord ing to various examples , the composite can be applied to a substrate such as using a solution containing CNTs and other constituents such as sulfur . The solution can be spray applied to a substrate , or spin - coated upon a substrate , such as to provide a uniform , conductive , and optically - transpar ent film layer . In one application , such a film layer can be …