Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Calibration

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 84

Full-Text Articles in Engineering

Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper Jan 2024

Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, …


Balance Assessment Using A Smartwatch Inertial Measurement Unit With Principal Component Analysis For Anatomical Calibration, Benjamin M. Presley, Jeffrey C. Sklar, Scott J. Hazelwood, Britta Berg-Johansen, Stephen M. Klisch May 2023

Balance Assessment Using A Smartwatch Inertial Measurement Unit With Principal Component Analysis For Anatomical Calibration, Benjamin M. Presley, Jeffrey C. Sklar, Scott J. Hazelwood, Britta Berg-Johansen, Stephen M. Klisch

Biomedical Engineering

Balance assessment, or posturography, tracks and prevents health complications for a variety of groups with balance impairment, including the elderly population and patients with traumatic brain injury. Wearables can revolutionize state-of-the-art posturography methods, which have recently shifted focus to clinical validation of strictly positioned inertial measurement units (IMUs) as replacements for force-plate systems. Yet, modern anatomical calibration (i.e., sensor-to-segment alignment) methods have not been utilized in inertial-based posturography studies. Functional calibration methods can replace the need for strict placement of inertial measurement units, which may be tedious or confusing for certain users. In this study, balance-related metrics from a smartwatch …


Subnetwork Ensembling And Data Augmentation: Effects On Calibration, A. Çağrı Demir, Simon Caton, Pierpaolo Dondio Jan 2023

Subnetwork Ensembling And Data Augmentation: Effects On Calibration, A. Çağrı Demir, Simon Caton, Pierpaolo Dondio

Articles

Deep Learning models based on convolutional neural networks are known to be uncalibrated, that is, they are either overconfident or underconfident in their predictions. Safety-critical applications of neural networks, however, require models to be well-calibrated, and there are various methods in the literature to increase model performance and calibration. Subnetwork ensembling is based on the over-parametrization of modern neural networks by fitting several subnetworks into a single network to take advantage of ensembling them without additional computational costs. Data augmentation methods have also been shown to enhance model performance in terms of accuracy and calibration. However, ensembling and data augmentation …


Mitigating Popularity Bias In Recommendation With Unbalanced Interactions: A Gradient Perspective, Weijieying Ren, Lei Wang, Kunpeng Liu, Ruocheng Guo, Ee-Peng Lim, Yanjie Fu Dec 2022

Mitigating Popularity Bias In Recommendation With Unbalanced Interactions: A Gradient Perspective, Weijieying Ren, Lei Wang, Kunpeng Liu, Ruocheng Guo, Ee-Peng Lim, Yanjie Fu

Research Collection School Of Computing and Information Systems

Recommender systems learn from historical user-item interactions to identify preferred items for target users. These observed interactions are usually unbalanced following a long-tailed distribution. Such long-tailed data lead to popularity bias to recommend popular but not personalized items to users. We present a gradient perspective to understand two negative impacts of popularity bias in recommendation model optimization: (i) the gradient direction of popular item embeddings is closer to that of positive interactions, and (ii) the magnitude of positive gradient for popular items are much greater than that of unpopular items. To address these issues, we propose a simple yet efficient …


Hardware-In-The-Loop Simulation To Evaluate The Performance And Constraints Of The Red-Light Violation Warning Application On Arterial Roads, Mahmoud Arafat Mar 2022

Hardware-In-The-Loop Simulation To Evaluate The Performance And Constraints Of The Red-Light Violation Warning Application On Arterial Roads, Mahmoud Arafat

FIU Electronic Theses and Dissertations

Understanding the safety and mobility impacts of Connected Vehicle (CV) applications is critical for ensuring effective implementations of these applications. This dissertation provides an assessment of the safety and mobility impacts of the Red-Light Violation Warning (RLVW), a CV-based application at signalized intersections, under pre-timed signal control and semi-actuated signal control utilizing Emulator-in-the-loop (EILS), Software-in-the-loop (SILS), and Hardware-in-the-loop simulation (HILS) environments. Modern actuated traffic signal controllers contain several features with which controllers can provide varying green intervals for actuated phases, skip phases, and terminate phases depending on the traffic demand fluctuation from cycle to cycle. With actuated traffic signal operations, …


Assessing Complete Street Strategies Using Microscopic Traffic Simulation Models, Bernice Liu, Alireza Shams, Jonathan Howard, Serena Alexander, Alex Hughes, Anurag Pande Jun 2020

Assessing Complete Street Strategies Using Microscopic Traffic Simulation Models, Bernice Liu, Alireza Shams, Jonathan Howard, Serena Alexander, Alex Hughes, Anurag Pande

Mineta Transportation Institute

Authors of this research developed a traffic simulation model for the downtown San Jose network and evaluated five different street redesign and travel demand combinations. This model aids understanding of network-wide effects of changes in street design for local and regional agencies who are interested in implementing complete streets and/or one-way to two-way conversion. The base network may be altered to model and evaluate other complete streets (e.g., road diet) and tactical urbanism (e.g., farmer’s market on city streets on certain days of the week) scenarios. The 3-dimensional animated videos for each scenario are also created to be used for …


Use Of Multiple Environment Variety Trials Data To Simulate Maize Yields In The Ogallala Aquifer Region: A Two Model Approach, Vaishali Sharda, Mesfin Mekonnen, Chittaranjan Ray, Prasanna H. Gowda Jan 2020

Use Of Multiple Environment Variety Trials Data To Simulate Maize Yields In The Ogallala Aquifer Region: A Two Model Approach, Vaishali Sharda, Mesfin Mekonnen, Chittaranjan Ray, Prasanna H. Gowda

Daugherty Water for Food Global Institute: Faculty Publications

With a long-term goal to optimize use of groundwater in the Ogallala Aquifer Region (OAR) to sustain food production systems, this study was conducted to calibrate Decision Support System for Agrotechnology Transfer (DSSAT) and AquaCrop crop modeling platforms to simulate maize production at a regional scale using historic datasets. Calibration of the models with local crop growth data and crop management practices is important, but usually this in-season crop growth information is not available. This study determined the possibility of using maize variety trial data for the evaluation of the CSM-Crop Estimation through Resources and Environmental Synthesis-Maize and AquaCrop models …


Soil Structure And Texture Effects On The Precision Of Soil Water Content Measurements With A Capacitance-Based Electromagnetic Sensor, Jasreman Singh, Derek M. Heeren, Daran Rudnick, Wayne Woldt, Geng Bai, Yufeng Ge, Joe D. Luck Jan 2020

Soil Structure And Texture Effects On The Precision Of Soil Water Content Measurements With A Capacitance-Based Electromagnetic Sensor, Jasreman Singh, Derek M. Heeren, Daran Rudnick, Wayne Woldt, Geng Bai, Yufeng Ge, Joe D. Luck

Department of Biological Systems Engineering: Papers and Publications

The physical properties of soil, such as structure and texture, can affect the performance of an electromagnetic sensor in measuring soil water content. Historically, calibrations have been performed on repacked samples in the laboratory and on in situ soils in the field, but little research has been done on laboratory calibrations with intact (undisturbed) soil cores. In this study, three replications each of disturbed and undisturbed soil samples were collected from two soil texture classes (Yutan silty clay loam and Fillmore silt loam) at a field site in eastern Nebraska to investigate the effects of soil structure and texture on …


Calibration Of A Common Shortwave Multispectral Camera System For Quantitative Agricultural Applications, J. Burdette Barker, Wayne Woldt, Brian Wardlow, Christopher Michael Usher Neale, Mitchell S. Maguire, Bryan Leavitt, Derek M. Heeren Jan 2020

Calibration Of A Common Shortwave Multispectral Camera System For Quantitative Agricultural Applications, J. Burdette Barker, Wayne Woldt, Brian Wardlow, Christopher Michael Usher Neale, Mitchell S. Maguire, Bryan Leavitt, Derek M. Heeren

Department of Biological Systems Engineering: Papers and Publications

Unmanned aerial systems (UAS) for collecting multispectral imagery of agricultural fields are becoming more affordable and accessible. However, there is need to validate calibration of sensors on these systems when using them for quantitative analyses such as evapotranspiration, and other modeling for agricultural applications. The results of laboratory testing of a MicaSense (Seattle, WA, USA) RedEdge™ 3 multispectral camera and MicaSense Downwelling Light Sensor (irradiance sensor) system using a calibrated integrating sphere were presented. Responses of the camera and irradiance sensor were linear over many light levels and became non-linear at light levels below expected real-world, field conditions. Simple linear …


Better Beware: Comparing Metacognition For Phishing And Legitimate Emails, Casey I. Canfield, Baruch Fischhoff, Alex Davis Dec 2019

Better Beware: Comparing Metacognition For Phishing And Legitimate Emails, Casey I. Canfield, Baruch Fischhoff, Alex Davis

Engineering Management and Systems Engineering Faculty Research & Creative Works

Every electronic message poses some threat of being a phishing attack. If recipients underestimate that threat, they expose themselves, and those connected to them, to identity theft, ransom, malware, or worse. If recipients overestimate that threat, then they incur needless costs, perhaps reducing their willingness and ability to respond over time. In two experiments, we examined the appropriateness of individuals' confidence in their judgments of whether email messages were legitimate or phishing, using calibration and resolution as metacognition metrics. Both experiments found that participants had reasonable calibration but poor resolution, reflecting a weak correlation between their confidence and knowledge. These …


Towards Overcoming The Curse Of Dimensionality: The Third-Order Adjoint Method For Sensitivity Analysis Of Response-Coupled Linear Forward/Adjoint Systems, With Applications To Uncertainty Quantification And Predictive Modeling, Dan Gabriel Cacuci Nov 2019

Towards Overcoming The Curse Of Dimensionality: The Third-Order Adjoint Method For Sensitivity Analysis Of Response-Coupled Linear Forward/Adjoint Systems, With Applications To Uncertainty Quantification And Predictive Modeling, Dan Gabriel Cacuci

Faculty Publications

This work presents the Third-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM) for response-coupled forward and adjoint linear systems. The 3rd-ASAM enables the efficient computation of the exact expressions of the 3rd-order functional derivatives ("sensitivities") of a general system response, which depends on both the forward and adjoint state functions, with respect to all of the parameters underlying the respective forward and adjoint systems. Such responses are often encountered when representing mathematically detector responses and reaction rates in reactor physics problems. The 3rd-ASAM extends the 2nd-ASAM in the quest to overcome the "curse of dimensionality" in sensitivity analysis, uncertainty quantification and predictive …


Experimental Calibration Of Centrally Loaded Built-Up Battened Compression Members, Ghada El-Mahdy Ph.D., P.Eng. Sep 2019

Experimental Calibration Of Centrally Loaded Built-Up Battened Compression Members, Ghada El-Mahdy Ph.D., P.Eng.

Civil Engineering

There is a large diversity in the requirements for designing built-up compression members between international design codes. Most codes, including the North American standards and specifications specify the use of an equivalent or modified slenderness ratio. In general, all North American standards and specifications agree on the need of using a modified slenderness ratio, but differ in the factor used to multiply the local slenderness ratio. Theoretically it is difficult to estimate the exact value of this factor, and using experimental methods does not capture the exact value of this factor either. Hence, a different approach is needed to determine …


Capability Of Matterport 3d Camera For Industrial Archaeology Sites Inventory, R. Shults, E. Levin, R. Habibi, S. Shenoy, O. Honcheruk, T. Hart, Z. An May 2019

Capability Of Matterport 3d Camera For Industrial Archaeology Sites Inventory, R. Shults, E. Levin, R. Habibi, S. Shenoy, O. Honcheruk, T. Hart, Z. An

Michigan Tech Publications

This paper provides an overview of state-of-The-Art technology and sensor for the inventory of industrial archaeology. As an object of study, a historical copper shaft the Quincy Mine in Michigan State Upper Peninsula was chosen. This shaft was operated for nearly 100 years from 1846 to 1945 and today, what remains of the shaft is a part of the Keweenaw National Historical Park. The main sensor for data acquisition that was used is a 3D camera Matterport. In given research, the results of the above ground scanning using of Matterport are presented. Before scanning a calibration of Matterport camera was …


Quantifying And Correcting For Clay Content Effects On Soil Water Measurement By Reflectometers, Jasreman Singh, Tsz Him Lo, Daran Rudnick, Suat Irmak, Humberto Blanco-Canqui Feb 2019

Quantifying And Correcting For Clay Content Effects On Soil Water Measurement By Reflectometers, Jasreman Singh, Tsz Him Lo, Daran Rudnick, Suat Irmak, Humberto Blanco-Canqui

Department of Biological Systems Engineering: Papers and Publications

The presence of clay particles increases the specific surface area of a soil and can affect the calibration of electromagnetic soil water sensors including reflectometers. To quantify and correct for this effect in two relatively new reflectometers, three TDR315 and three CS655 sensors were installed in each of five soils with clay content ranging from 5 to 49%. As the soils were dried in a temperature controlled room, sensor reported soil volumetric water content (θv) according to the factory calibration was compared against reference θv determined by weighing the soils. Sensor reported θv was similar to …


Capacitive Sensor And Its Calibration: A Technique For The Estimation Of Solid Particles Flow Concentration, Usama Abrar, Liu Shi, Nasif R. Jaffri, Qin Li, Mian W. Omar, Hassan R. Sindhu Jan 2019

Capacitive Sensor And Its Calibration: A Technique For The Estimation Of Solid Particles Flow Concentration, Usama Abrar, Liu Shi, Nasif R. Jaffri, Qin Li, Mian W. Omar, Hassan R. Sindhu

Research outputs 2014 to 2021

The precise and accurate measurement of flow rate in the batch flow of the solid particles is of primary importance in many process industries for the improvement of the efficiency of the system. Many techniques developed for the measurement of mass flow rate. The capacitive sensors has a significance of being non-invasive, higher accuracy and low cost for mass flow measurement despite the fact that many factors adversely affect the performance- including non-uniform flow, multiphase flow, temperature, pressure, and moisture in the solid particles. This paper covers preliminary investigations of the offline estimation of mass flow concentration based upon the …


Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal Nov 2018

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal

FIU Electronic Theses and Dissertations

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor …


Development Of Boron Calibration Via Hybrid Comparator Method In Prompt Gamma Activation Analysis, E. J. Artnak, S. R. Biegalski, S. Landsberger, Natale Lanno, Dennis Alexander, M. F. Byers Aug 2018

Development Of Boron Calibration Via Hybrid Comparator Method In Prompt Gamma Activation Analysis, E. J. Artnak, S. R. Biegalski, S. Landsberger, Natale Lanno, Dennis Alexander, M. F. Byers

Department of Electrical and Computer Engineering: Faculty Publications

The prompt gamma activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory at The University of Texas at Austin was utilized to quantify boron concentrations in boron carbide semiconductor films deposited on silicon substrates. Calibration was complicated by the unique and varying sample geometries analyzed. In addition, there was a dearth of solid materials available with quantified boron concentrations having comparable or readily modifiable dimensions to exploit for calibration purposes. Therefore, a novel hybrid comparator method was developed for the quantification of boron utilizing aluminum as an inexpensive and easily machinable reference material. Aluminum samples were manufactured with high …


Stochastic Search Methods For Mobile Manipulators, Amoako-Frimpong Samuel Yaw, Matthew Messina, Henry P. Medeiros, Jeremy Marvel, Roger Bostelman Jan 2018

Stochastic Search Methods For Mobile Manipulators, Amoako-Frimpong Samuel Yaw, Matthew Messina, Henry P. Medeiros, Jeremy Marvel, Roger Bostelman

Electrical and Computer Engineering Faculty Research and Publications

Mobile manipulators are a potential solution to the increasing need for additional flexibility and mobility in industrial applications. However, they tend to lack the accuracy and precision achieved by fixed manipulators, especially in scenarios where both the manipulator and the autonomous vehicle move simultaneously. This paper analyzes the problem of dynamically evaluating the positioning error of mobile manipulators. In particular, it investigates the use of Bayesian methods to predict the position of the end-effector in the presence of uncertainty propagated from the mobile platform. The precision of the mobile manipulator is evaluated through its ability to intercept retroreflective markers using …


Evaluation Of The Accuracy Of Machine Reported Can Data For Engine Torque And Speed (J1939), Rodney A. Rohrer, Joe D. Luck, Santosh K. Pitla, Roger M. Hoy Jan 2018

Evaluation Of The Accuracy Of Machine Reported Can Data For Engine Torque And Speed (J1939), Rodney A. Rohrer, Joe D. Luck, Santosh K. Pitla, Roger M. Hoy

Department of Biological Systems Engineering: Papers and Publications

Most modern off-road machinery use embedded electronic controllers connected to a controller area network (CAN) to broadcast machine information for on-board processes and diagnostics. Commercially available tools can record CAN data for a variety of research and commercial uses. For agricultural tractors, there is an opportunity to create advanced test procedures that are more representative of field operations and that could supplement existing machine performance tests, such as the OECD Code 2 Standard Code for the Official Testing of Agricultural and Forestry Tractor Performance. CAN parameters provide an efficient way to collect tractor performance data during field operations. However, the …


Performance Assessment Of Electromagnetic Soil Water Sensors In Different Soil Textural, Temperature, And Salinity Conditions, Jasreman Singh Dec 2017

Performance Assessment Of Electromagnetic Soil Water Sensors In Different Soil Textural, Temperature, And Salinity Conditions, Jasreman Singh

Department of Biological Systems Engineering: Dissertations and Theses

Determination of accurate and continuous measurements of volumetric water content (θv) is extremely valuable for irrigation management and other agronomic decisions. Lately, electromagnetic (EM) sensors are being widely used to monitor θv continuously which also offer the benefits of ease of installation, fewer regulatory and safety concerns, and cost effectiveness. However, the accuracy of parameters [soil temperature, electrical conductivity (ECa), dielectric permittivity (εra), and θv] reported by EM sensors need to be evaluated for them to be utilized for agricultural water management. In the current study, the accuracy of a wide …


Load Model Verification, Validation And Calibration Framework By Statistical Analysis On Field Data, Xiangqing Jiao, Yuan Liao, Thai Nguyen Nov 2017

Load Model Verification, Validation And Calibration Framework By Statistical Analysis On Field Data, Xiangqing Jiao, Yuan Liao, Thai Nguyen

Electrical and Computer Engineering Faculty Publications

Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically …


Performance Assessment Of Diffuse Optical Spectroscopic Imaging Instruments In A 2-Year Multicenter Breast Cancer Trial, Anais Leproux, Thomas D.O. Sullivan, Albert E. Cerussi, Amanda Durkin, Brian Hill, Nola M. Hylton, Arjun G. Yodh, Stefan A. Carp, David A. Boas, Shudong Jiang, Keith D. Paulsen, Brian W. Pogue, Darren M. Roblyr, Wei T. Yang, Bruce J. Tromberg Aug 2017

Performance Assessment Of Diffuse Optical Spectroscopic Imaging Instruments In A 2-Year Multicenter Breast Cancer Trial, Anais Leproux, Thomas D.O. Sullivan, Albert E. Cerussi, Amanda Durkin, Brian Hill, Nola M. Hylton, Arjun G. Yodh, Stefan A. Carp, David A. Boas, Shudong Jiang, Keith D. Paulsen, Brian W. Pogue, Darren M. Roblyr, Wei T. Yang, Bruce J. Tromberg

Dartmouth Scholarship

We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received …


Scan: Multi-Hop Calibration For Mobile Sensor Arrays, Balz Maag, Zimu Zhou, Olga Saukh, Lothar Thiele Jun 2017

Scan: Multi-Hop Calibration For Mobile Sensor Arrays, Balz Maag, Zimu Zhou, Olga Saukh, Lothar Thiele

Research Collection School Of Computing and Information Systems

Urban air pollution monitoring with mobile, portable, low-cost sensors has attracted increasing research interest for their wide spatial coverage and affordable expenses to the general public. However, low-cost air quality sensors not only drift over time but also suffer from cross-sensitivities and dependency on meteorological effects. Therefore calibration of measurements from low-cost sensors is indispensable to guarantee data accuracy and consistency to be fit for quantitative studies on air pollution. In this work we propose sensor array network calibration (SCAN), a multi-hop calibration technique for dependent low-cost sensors. SCAN is applicable to sets of co-located, heterogeneous sensors, known as sensor …


Fourth-Generation Fan Assessment Numeration System (Fans) Design And Performance Specifications, Michael P. Sama, George B. Day, Laura M. Pepple, Richard S. Gates Jan 2017

Fourth-Generation Fan Assessment Numeration System (Fans) Design And Performance Specifications, Michael P. Sama, George B. Day, Laura M. Pepple, Richard S. Gates

Biosystems and Agricultural Engineering Faculty Publications

The Fan Assessment Numeration System (FANS) is a measurement device for generating ventilation fan performance curves. Three different-sized FANS currently exist for assessing ventilation fans commonly used in poultry and livestock housing systems. All FANS consist of an array of anemometers inside an aluminum shroud that traverse the inlet or outlet of a ventilation fan. The FANS design has been updated several times since its inception and is currently in its fourth-generation (G4). The current design iteration (FANS-G4) is reported in this article with an emphasis on the hardware and software control, data acquisition systems, and operational reliability. Six FANS-G4 …


Automated Calibration Of Electrochemical Oxygen Sensors For Use In Compost Bedded Pack Barns, John T. Evans, Michael P. Sama, Joseph L. Taraba, George B. Day Jan 2017

Automated Calibration Of Electrochemical Oxygen Sensors For Use In Compost Bedded Pack Barns, John T. Evans, Michael P. Sama, Joseph L. Taraba, George B. Day

Biosystems and Agricultural Engineering Faculty Publications

The objective of this study was to develop an automated calibration process for a galvanic cell type oxygen sensor. The manufacturer recommended a two-point calibration at room temperature; however, testing revealed that the response was not linear when both the temperature and oxygen concentrations varied. Thus, additional points were needed to generate a representative calibration equation and to reduce the sensor prediction interval. The calibration process needed to be capable of automatically recording sensor response (voltage) at an array of temperatures and oxygen concentrations. Calibration gases were used to precisely control the oxygen concentration inside a small manifold, and an …


Development Of A Statistically-Based Methodology For Analyzing Automatic Safety Treatments At Isolated High-Speed Signalized Intersections, Remigiusz M. Wojtal, Laurence R. Rilett Jan 2017

Development Of A Statistically-Based Methodology For Analyzing Automatic Safety Treatments At Isolated High-Speed Signalized Intersections, Remigiusz M. Wojtal, Laurence R. Rilett

Department of Civil and Environmental Engineering: Faculty Publications

Crashes at isolated rural intersections, particularly those involving vehicles traveling perpendicularly to each other, are especially dangerous due to the high speeds involved. Consequently, transportation agencies are interested in reducing the occurrence of this crash type. Many engineering treatments exist to improve safety at isolated, high-speed, signalized intersections. Intuitively, it is critical to know which safety treatments are the most effective for a given set of selection criteria at a particular intersection. Without a well-defined decision making methodology, it is difficult to decide which safety countermeasure, or set of countermeasures, is the best option. Additionally, because of the large number …


Development And Characterisation Of A Bath-Based Vertical Blackbody Cavity Calibration Source For The Range −30 °C To 150 °C, Sam Boles, Igor Pušnik, Dubhaltach Mac Lochlainn, David Fleming, Izabela Naydenova, Suzanne Martin Jan 2017

Development And Characterisation Of A Bath-Based Vertical Blackbody Cavity Calibration Source For The Range −30 °C To 150 °C, Sam Boles, Igor Pušnik, Dubhaltach Mac Lochlainn, David Fleming, Izabela Naydenova, Suzanne Martin

Articles

Industrial use of Radiation Thermometers (RTs) is becoming increasingly common due to the perceived advantages and wide market availability. Blackbody Cavity Radiation Sources (BCRSs) are typically used for calibration of these instruments, and these cavities are oriented horizontally in most cases. For BCRSs based in thermal baths, this necessitates the use of custom-built baths with side openings. This paper presents a unique design of vertical bath-based BCRS that may be immersed in conventional calibration baths without modifications to the baths. The method, results, and analysis of an international comparison comparing this vertical BCRS, standard horizontal BCRSs, and a previous iteration …


Vicarious Calibration Of Suas Thermal Imagery For Scientific Remote Sensing Applications [B53h-0607], Alfonso F. Torres-Rua Dec 2016

Vicarious Calibration Of Suas Thermal Imagery For Scientific Remote Sensing Applications [B53h-0607], Alfonso F. Torres-Rua

AggieAir Presentations

Small Unmanned Aerial Systems (sUAS) have become an accessible technology for collection of spatially distributed temperature data at fine resolution. Nevertheless, lack of standard procedures for atmospheric temperature correction can have an adverse impact on the conclusions and replicability of studies using this technology. This work presents a vicarious calibration methodology for sUAS thermal imagery traceable back to NIST standards. For this methodology, a 3-yr. data collection campaign with a sUAS technology, called “AggieAir”, developed at the Utah Water Research Laboratory, was performed under different daytime conditions. A comparison between original and vicarious calibration for the sUAS thermal imagery is …


A Virtual Instrument To Standardise The Calibration Of Atomic Force Microscope Cantilevers, John E. Sader, Riccardo Borgani, Christopher T. Gibson, David B. Haviland, Michael J. Higgins, Jason I. Kilpatrick, Jianing Lu, Paul Mulvaney, Cameron J. Shearer, Ashley D. Slattery, Per-Anders Thorén, Jim Tran, Heyou Zhang, Tian Zheng Jan 2016

A Virtual Instrument To Standardise The Calibration Of Atomic Force Microscope Cantilevers, John E. Sader, Riccardo Borgani, Christopher T. Gibson, David B. Haviland, Michael J. Higgins, Jason I. Kilpatrick, Jianing Lu, Paul Mulvaney, Cameron J. Shearer, Ashley D. Slattery, Per-Anders Thorén, Jim Tran, Heyou Zhang, Tian Zheng

Australian Institute for Innovative Materials - Papers

Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This calibration is performed without reference to a global standard, hindering the robust comparison of force measurements reported by different laboratories. Here, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others-standardising AFM force measurements-and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website …


Analyses, Calibration And Validation Of Evapotranspirationmodels To Predict Grass-Reference Evapotranspiration In Thesenegal River Delta, Koffi Djaman, Hossein Tabari, Alpha B. Balde, Lamine Diop, Koichi Futakuchi, Suat Irmak Jan 2016

Analyses, Calibration And Validation Of Evapotranspirationmodels To Predict Grass-Reference Evapotranspiration In Thesenegal River Delta, Koffi Djaman, Hossein Tabari, Alpha B. Balde, Lamine Diop, Koichi Futakuchi, Suat Irmak

Department of Biological Systems Engineering: Papers and Publications

Study region: Grass-reference evapotranspiration estimation by the Penman-Monteithmethod (PM-ETo) requires a number of climate variables which are not always availableat all weather stations. Different alternative ETo equations have been developed and theirutilization for various local climate conditions requires analyses of their accuracy as com-pared to the standardized Penman-Monteith method. There is a significant lack of data andinformation on this topic in the Senegal River Delta (SRD). Study focus: The objective of this study was to evaluate, calibrate and validate six EToequations ((Trabert, Mahringer, Penman1948, Albrecht, Valiantzas1 and Valiantzas2) forthe SRD. Although all six equations showed good agreement with the PM-ETo …