Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Resilient Consensus Control Design For Dc Microgrids Against False Data Injection Attacks Using A Distributed Bank Of Sliding Mode Observers, Yousof Barzegari, Jafar Zarei, Roozbeh Razavi-Far, Mehrdad Saif, Vasile Palade Apr 2022

Resilient Consensus Control Design For Dc Microgrids Against False Data Injection Attacks Using A Distributed Bank Of Sliding Mode Observers, Yousof Barzegari, Jafar Zarei, Roozbeh Razavi-Far, Mehrdad Saif, Vasile Palade

Electrical and Computer Engineering Publications

This paper investigates the problem of false data injection attack (FDIA) detection in microgrids. The grid under study is a DC microgrid with distributed boost converters, where the false data are injected into the voltage data so as to investigate the effect of attacks. The proposed algorithm uses a bank of sliding mode observers that estimates the states of the neighbor agents. Each agent estimates the neighboring states and, according to the estimation and communication data, the detection mechanism reveals the presence of FDIA. The proposed control scheme provides resiliency to the system by replacing the conventional consensus rule with …


An Interleaved High Step-Up Dc-Dc Converter With Built-In Transformer-Based Voltage Multiplier For Dc Microgrid Applications, Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, Pourya Shamsi Jan 2022

An Interleaved High Step-Up Dc-Dc Converter With Built-In Transformer-Based Voltage Multiplier For Dc Microgrid Applications, Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, Pourya Shamsi

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a high step-up DC-DC converter with a built-in transformer (BIT)-based voltage multiplier (VM) that is suitable for integrating low-voltage renewable energy sources into a DC microgrid. A three-winding BIT is combined with the switched-capacitor (SC) cells to extend the voltage gain and reduce the voltage stress on the switches. The current-falling rates of the diodes are controlled by the leakage inductances of the BIT, alleviating the reverse-recovery problem of the diodes. The operating modes and steady-state analysis are presented. Additionally, the validity of the proposed converter is confirmed by the simulation and experimental results of a 400 …