Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

2002

Electrochemical electrodes

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti Jan 2002

Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti

Faculty Publications

Tin-graphite composites have been developed as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific discharge capacity, coulombic efficiency, rate capability behavior, and cycle life of Sn-C composites has been studied using a variety of electrochemical methods. The amount of tin loading and the heating temperature have a significant effect on the composite performance. The synthesis conditions and Sn loading on graphite have been optimized to obtain the maximum reversible capacity for the composite electrode. Heating the composite converts it from amorphous to crystalline form. Apart from higher capacity, Sn-graphite composites possesses higher coulombic efficiency, …


Estimation Of Diffusion Coefficient Of Lithium In Carbon Using Ac Impedance Technique, Qingzhi Guo, Venkat R. Subramanian, John W. Weidner, Ralph E. White Jan 2002

Estimation Of Diffusion Coefficient Of Lithium In Carbon Using Ac Impedance Technique, Qingzhi Guo, Venkat R. Subramanian, John W. Weidner, Ralph E. White

Faculty Publications

The validity of estimating the solid phase diffusion coefficient, Ds, of a lithium intercalation electrode from impedance measurement by a modified electrochemical impedance spectroscopy (EIS) method is studied. A macroscopic porous electrode model and concentrated electrolyte theory are used to simulate the synthetic impedance data. The modified EIS method is applied for estimating Ds. The influence of parameters such as the exchange current density, radius of active material particle, solid phase conductivity, porosity, volume fraction of inert material, and thickness of the porous carbon intercalation electrode, the solution phase diffusion coefficient, and transference number, on the …


Development Of A Novel Co Tolerant Proton Exchange Membrane Fuel Cell Anode, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang Jan 2002

Development Of A Novel Co Tolerant Proton Exchange Membrane Fuel Cell Anode, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang

Faculty Publications

Typically Pt is alloyed with metals such as Ru, Sn, or Mo to provide a more CO-tolerant, high-performance proton exchange membrane fuel cell (PEMFC) anode. In this work, a layer of carbon-supported Ru is placed between the Pt catalyst and the anode flow field to form a filter. When oxygen is added to the fuel stream, it was predicted that the slow H2 kinetics of Ru in this filter would become an advantage compared to Pt and Pt:Ru alloy anodes, allowing a greater percentage of O2 to oxidize adsorbed CO to CO2. With an anode feed …


Using Sputter Deposition To Increase Co Tolerance In A Proton-Exchange Membrane Fuel Cell, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang, Steven Shi, Narender Rana, Stephan Grunow, Timothy C. Stoner, Alain E. Kaloyeros Jan 2002

Using Sputter Deposition To Increase Co Tolerance In A Proton-Exchange Membrane Fuel Cell, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang, Steven Shi, Narender Rana, Stephan Grunow, Timothy C. Stoner, Alain E. Kaloyeros

Faculty Publications

Placing a layer of Ru atop a Pt anode increases the carbon monoxide tolerance of proton-exchange membrane fuel cells when oxygen is added to the fuel stream. Sputter-deposited Ru filter anodes composed of a single Ru layer and three Ru layers separated by Nafion-carbon ink, respectively, were compared to Pt, Pt:Ru alloy, and an ink-based Ru filter anodes. The amount of Pt in each anode was 0.15 mg/cm2 and the amount of Ru in each Ru-containing anode was 0.080 mg/cm2. For an anode feed consisting of hydrogen, 200 ppm CO, and 2% O2 (in the form …


Studies On Capacity Fade Of Spinel-Based Li-Ion Batteries, Ramadass Premanand, Anand Durairajan, Bala Haran, Ralph E. White, Branko N. Popov Jan 2002

Studies On Capacity Fade Of Spinel-Based Li-Ion Batteries, Ramadass Premanand, Anand Durairajan, Bala Haran, Ralph E. White, Branko N. Popov

Faculty Publications

The performance of Cell-Batt® Li-ion cells using nonstoichiometric spinel as the positive electrode material has been studied at different charging rates. The capacity of the cell was optimized based on varying the charging current and the end potential. Subsequent to this, the capacity fade of these batteries was studied at different charge currents. During cycling, cells were opened at intermittent cycles and extensive material and electrochemical characterization was done on the active material at both electrodes. For all charge currents, the resistance of both the electrodes does not vary significantly with cycling. This result is in contrast with cells …


Modeling The Effects Of Electrode Composition And Pore Structure On The Performance Of Electrochemical Capacitors, Changqing Lin, Branko N. Popov, Harry J. Ploehn Jan 2002

Modeling The Effects Of Electrode Composition And Pore Structure On The Performance Of Electrochemical Capacitors, Changqing Lin, Branko N. Popov, Harry J. Ploehn

Faculty Publications

This work presents a mathematical model for charge/discharge of electrochemical capacitors that explicitly accounts for particle-packing effects in a composite electrochemical capacitor consisting of hydrous RuO2 nanoparticles dispersed within porous activated carbon. The model is also used to investigate the effect of nonuniform distributions of salt in the electrolyte phase of the electrode in the context of dilute solution theory. We use the model to compare the performance of capacitors with electrodes made from different activated carbons and to investigate the effects of varying carbon content and discharge current density. Even at low discharge current density, concentration polarization in …


Modeling The Effects Of Electrode Composition And Pore Structure On The Performance Of Electrochemical Capacitors, Changqing Lin, Branko N. Popov, Harry J. Ploehn Jan 2002

Modeling The Effects Of Electrode Composition And Pore Structure On The Performance Of Electrochemical Capacitors, Changqing Lin, Branko N. Popov, Harry J. Ploehn

Faculty Publications

This work presents a mathematical model for charge/discharge of electrochemical capacitors that explicitly accounts for particle-packing effects in a composite electrochemical capacitor consisting of hydrous RuO2 nanoparticles dispersed within porous activated carbon. The model is also used to investigate the effect of nonuniform distributions of salt in the electrolyte phase of the electrode in the context of dilute solution theory. We use the model to compare the performance of capacitors with electrodes made from different activated carbons and to investigate the effects of varying carbon content and discharge current density. Even at low discharge current density, concentration polarization in …