Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam Oct 2019

Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam

Theses and Dissertations

Scientists and engineers have been working for many years to develop accurate approaches to analyzing nuclear power reactors using computer codes that closely model the behavior of neutrons in a reactor core. The Monte Carlo simulation method is capable of treating complex geometries with a high level of resolution and fidelity to model neutron interactions inside a reactor core. With the requirement of accurate modeling in reactor physics and dynamics and great innovation of computer technology, Monte Carlo method is becoming an ever more powerful tool and receiving rising attention. In this study, Monte Carlo method is used to model …


Molecular Modeling Of Tethered Polyelectrolytes For Novel Biomedical Applications, Merina Jahan Oct 2019

Molecular Modeling Of Tethered Polyelectrolytes For Novel Biomedical Applications, Merina Jahan

Theses and Dissertations

Current research trends throughout the world focus on designing intelligent materi- als and systems for diverse applications in all courses of life. Biomaterials research encompasses a major part in this revolution due to the increased effort in fulfilling unmet medical needs to treat complex physiological and neurodegenerative disorders. Polymers play inevitable roles in these research endeavors for their ubiquitous pres- ence in biological systems. Therefore, it is crucial to understand how the polymeric molecules interact within diverse biological environments, to efficiently engineer them for various drug delivery and biosensing systems. The use of experimental design and selection of different polymers …


Comparison Of Heat Generation Models In Finite Element Analysis Of Friction Welding, Richard Verile Livingston Aug 2019

Comparison Of Heat Generation Models In Finite Element Analysis Of Friction Welding, Richard Verile Livingston

Theses and Dissertations

Finite element models of friction welding can be used to estimate internal conditions of welds which are useful for weld analysis and developing experimental welding procedures. Many modeling techniques are used to accomplish these goals, each with relative strengths and weaknesses. A comparative analysis of friction welding models using different heat generation methods is presented. The three different heat generation methods examined were viscoplastic friction, constant steady-state generation, and experimentally measured power data. The models were compared against each other using three output measurements: temperature, axial force, and upset. The friction model predicted temperatures within 40 degrees C. Temperature accuracy …


Three-Dimensional Collagen Tubes For In Vitro Modeling, Rebecca Jones Apr 2019

Three-Dimensional Collagen Tubes For In Vitro Modeling, Rebecca Jones

Theses and Dissertations

Collagen type I represents a novel material for three-dimensional in vitro models. While two-dimensional models are typically inadequate for recreating the complex processes of the body, collagen provides a three-dimensional basis with a variety of applications, including remodeling of vascular cells under tension and vascular stenosis. Smooth muscle cells reorganize and reconstruct their environment differently under conditions of tensions, such as with sutures, or under conditions without applied external tension. Vascular stenosis, the abnormal narrowing of blood vessels, arises from defective developmental processes or atherosclerosis-related adult pathologies. Stenosis triggers a series of adaptive cellular responses that induces adverse remodeling, which …