Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Australian Institute for Innovative Materials - Papers

2015

Engineering

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Surface Engineering And Design Strategy For Surface-Amorphized Tio 2 @Graphene Hybrids For High Power Li-Ion Battery Electrodes, Tengfei Zhou, Yang Zheng, Hong Gao, Shudi Min, Sean Li, Hua-Kun Liu, Zaiping Guo Jan 2015

Surface Engineering And Design Strategy For Surface-Amorphized Tio 2 @Graphene Hybrids For High Power Li-Ion Battery Electrodes, Tengfei Zhou, Yang Zheng, Hong Gao, Shudi Min, Sean Li, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Electrode materials with battery-like high capacity and capacitorlike rate performance are highly desirable, since they would signifi cantly advance next-generation energy storage technology. [ 1 ] TiO 2 has received increasing attention as an anode material for lithium-ion batteries (LIBs) due to its good reversible capacity and low volume expansion upon lithiation, as well as its low cost and safe lithiation potential. [ 2 ] The low lithium-ion mobility within the crystalline phase TiO 2 , however, together with its poor electrical conductivity, means that only a thin surface layer of the host material is available for Li intercalation at …


Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation Of Human Neural Stem Cells: A Biocompatible Platform For Translational Neural Tissue Engineering, Elise Stewart, Nao R. Kobayashi, Michael J. Higgins, Anita Quigley, Sina S. Jamali, Simon Moulton, Robert M. I Kapsa, Gordon G. Wallace, Jeremy M. Crook Jan 2015

Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation Of Human Neural Stem Cells: A Biocompatible Platform For Translational Neural Tissue Engineering, Elise Stewart, Nao R. Kobayashi, Michael J. Higgins, Anita Quigley, Sina S. Jamali, Simon Moulton, Robert M. I Kapsa, Gordon G. Wallace, Jeremy M. Crook

Australian Institute for Innovative Materials - Papers

Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation, and conductive scaffolds for cell support and tissue engineering. Here we demonstrate the utility of electroactive CP Polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and …


Processable Conducting Graphene/Chitosan Hydrogels For Tissue Engineering, Sepidar Sayyar, Eoin Murray, Brianna Thompson, Johnson Chung, David L. Officer, Sanjeev Gambhir, Geoffrey M. Spinks, Gordon G. Wallace Jan 2015

Processable Conducting Graphene/Chitosan Hydrogels For Tissue Engineering, Sepidar Sayyar, Eoin Murray, Brianna Thompson, Johnson Chung, David L. Officer, Sanjeev Gambhir, Geoffrey M. Spinks, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Composites of graphene in a chitosan-lactic acid matrix were prepared to create conductive hydrogels that are processable, exhibit tunable swelling properties and show excellent biocompatibility. The addition of graphene to the polymer matrix also resulted in significant improvements to the mechanical strength of the hydrogels, with the addition of just 3 wt% graphene resulting in tensile strengths increasing by over 200%. The composites could be easily processed into three-dimensional scaffolds with finely controlled dimensions using additive fabrication techniques and fibroblast cells demonstrate good adhesion and growth on their surfaces. These chitosan-graphene composites show great promise for use as conducting substrates …


Performance Modulation Of Α-Mno2 Nanowires By Crystal Facet Engineering, W Li, Xiangyuan Cui, R Zeng, Guodong Du, Ziqi Sun, Rongkun Zheng, Simon Peter Ringer, S X. Dou Jan 2015

Performance Modulation Of Α-Mno2 Nanowires By Crystal Facet Engineering, W Li, Xiangyuan Cui, R Zeng, Guodong Du, Ziqi Sun, Rongkun Zheng, Simon Peter Ringer, S X. Dou

Australian Institute for Innovative Materials - Papers

Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2 (1 …


Boosting The Efficiency Of Quantum Dot Sensitized Solar Cells Up To 7.11% Through Simultaneous Engineering Of Photocathode And Photoanode, Yang Bai, Chao Han, Xinqi Chen, Hua Yu, Xu Zong, Zhen Li, Lianzhou Wang Jan 2015

Boosting The Efficiency Of Quantum Dot Sensitized Solar Cells Up To 7.11% Through Simultaneous Engineering Of Photocathode And Photoanode, Yang Bai, Chao Han, Xinqi Chen, Hua Yu, Xu Zong, Zhen Li, Lianzhou Wang

Australian Institute for Innovative Materials - Papers

We demonstrate a new strategy of boosting the efficiency of quantum dot sensitized solar cells (QDSSCs) by engineering the photocathode and photoanode simultaneously. Nanostructured photocathodes based on non-stoichiometric Cu2-xSe electrocatalysts were developed via a simple and scalable approach for CdS/CdSe QDs co-sensitized solar cells. Compared to Cu2S CE, remarkably improved photovoltaic performance was achieved for QDSSCs with Cu2-xSe CEs. The superior catalytic activity and electrical conductivity of Cu2-xSe CEs were verified by the electrochemical impedance spectra and Tafel-polarization measurements. To maximize the efficiency enhancement, the photoanodes were optimized by introducing a pillared …