Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Cellulose Biodegradability And Its Impact On Enhanced Biological Phosphorus Removal, Moustafa Ibrahim Elbahrawi Mar 2021

Cellulose Biodegradability And Its Impact On Enhanced Biological Phosphorus Removal, Moustafa Ibrahim Elbahrawi

Electronic Thesis and Dissertation Repository

Cellulose from toilet paper contributes approximately one third of the influent organic suspended solids (TSS) to wastewater treatment plants and is a key target for resources recovery. Cellulose recovery is beneficial as it reduces the required energy for treatment and biosolids treatment cost. Hence, understanding the hydrolysis of cellulose in wastewater which is mainly affected by temperature and the solids retention time (SRT), is a major key to determine the optimum location for its recovery. In order to assess the impact of temperature and SRT on cellulose degradation, this study investigated the biological aerobic degradation of cellulose in four laboratory-scale …


Future Changes Of Hydroclimatic Extremes In Western North America Using A Large Ensemble: The Role Of Internal Variability, Mohammad Hasan Mahmoudi Apr 2019

Future Changes Of Hydroclimatic Extremes In Western North America Using A Large Ensemble: The Role Of Internal Variability, Mohammad Hasan Mahmoudi

Electronic Thesis and Dissertation Repository

Increases in the intensity and frequency of extreme events in Western North America (WNA) can cause significant socioeconomic problems and threaten existing infrastructure. In this study we analyze the impacts of climate change on hydroclimatic extremes and assess the role of internal variability over WNA, which collectively drain an area of about 1 million km2. We used gridded observations and downscaled precipitation, maximum and minimum temperature from seven General Circulation Models (GCMs) that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and a large ensemble of CanESM2 model simulations (CanESM2-LE; 50 members) for this analysis. Spatial …


Experimental Testing And Modeling Of Partial Nitrification At Different Temperatures, Xiaoguang Liu Dec 2018

Experimental Testing And Modeling Of Partial Nitrification At Different Temperatures, Xiaoguang Liu

Electronic Thesis and Dissertation Repository

Nitrogen in wastewater treatment plant effluents has adverse environmental effects on aquatic systems. Excessive concentrations of nitrogen in water bodies can result in the depletion of dissolved oxygen, deterioration of water quality, and shifts of biotic community. Conventional biological nitrogen removal (BNR) processes consume high energy for nitrification and require external carbon for denitrification. Alternatively, partial nitrification is of interest as an emerging technology for its lower need of organic carbon addition and cost savings in aeration. In this study, the main objectives are: 1- developing a mathematical model involving operational parameters for the determination of successful partial nitrification conditions; …


Study On The Mechanical Behavior Of Directly Compounded Long Glass Fiber Reinforced Polyamide 6 Composites, Yuchao Liu May 2017

Study On The Mechanical Behavior Of Directly Compounded Long Glass Fiber Reinforced Polyamide 6 Composites, Yuchao Liu

Electronic Thesis and Dissertation Repository

With great lightweight potential, high performance-to-cost ratio and mass productivity, direct-compounded long fiber thermoplastics (D-LFT) have drawn great attention from the automotive industry. With better mechanical properties and higher service temperature, polyamide 6 (PA6) was used to replace polypropylene (PP) which is almost the exclusively used matrix for the D-LFT process currently. The investigation was performed on this new material with a focus on the effect of fiber content, processing parameters, temperature and tailored reinforcement on mechanical behavior. The results show that the mechanical properties of this new material are sensitive to the variation of fiber content and service temperature …


Nasopharyngeal Method For Selective Brain Cooling And Development Of A Time-Resolved Near-Infrared Technique To Monitor Brain Temperature And Oxidation Status During Hypothermia, Mohammad Fazel Bakhsheshi May 2014

Nasopharyngeal Method For Selective Brain Cooling And Development Of A Time-Resolved Near-Infrared Technique To Monitor Brain Temperature And Oxidation Status During Hypothermia, Mohammad Fazel Bakhsheshi

Electronic Thesis and Dissertation Repository

Mild hypothermia at 32-35oC (HT) has been shown to be neuroprotective for neurological emergencies following severe head trauma, cardiac arrest and neonatal asphyxia. However, HT has not been widely deployed in clinical settings because: firstly, cooling the whole body below 33-34°C can induce severe complications; therefore, applying HT selectively to the brain could minimize adverse effects by maintaining core body temperature at normal level. Secondly, development of an effective and easy to implement selective brain cooling (SBC) technique, which can quickly induce brain hypothermia while avoiding complications from whole body cooling, remains a challenge. In this thesis, we …